
COMPUTATIONS CONCERNING THE UNIFORM DOMINATION

NUMBER OF A FINITE SIMPLE GROUP

TIMOTHY C. BURNESS AND SCOTT HARPER

Abstract. In this note we provide a record of the GAP and Magma computations used
in the paper [6] on the uniform domination number of finite simple groups. The methods
are similar to those used by Breuer, Guralnick and Kantor in [4] to study the uniform
spread of simple groups, where the computations are documented in [3]. Throughout
this note, we freely adopt the notation and terminology introduced in [6].

1. Code

1.1. GAP functions. In this section we present two GAP [9] functions, which rely on the
Character Table Library [2]. We will use the Atlas notation [8], adopted by GAP, to refer
to simple groups and their conjugacy classes. We will assume that the following packages
are loaded:

LoadPackage( "AtlasRep" );

LoadPackage( "CTblLib" );

LoadPackage( "TomLib" );

1.1.1. Maximal subgroups. The function MaximalOvergroups provides information about
the set M(G, s) of maximal overgroups of an element s ∈ G. The input is the name of a
group G and the name of a conjugacy class sG. It returns a list of pairs [H, k] where H
represents a conjugacy class of maximal subgroups of G and k is the number of conjugates
of H which contain s.

MaximalOvergroups:= function( G, s )

local tbl, mx, prim, spos, nonz, j, results;

tbl:= CharacterTable( G );

mx:= List( Maxes(tbl), CharacterTable );

prim:= List( mx, x -> TrivialCharacter( x )^tbl );

spos:= Position( AtlasClassNames( tbl ), s );

nonz:= PositionsProperty( prim, pi -> pi[spos] <> 0 );

results:= [];

for j in nonz do

Add(results, [ Identifier(mx[j]), prim[j][ spos ] ]);

od;

return results;

end;

For example, if G = Suz and s ∈ 14A then MaximalOvergroups("Suz","14A") returns

[ [ J2.2, 2 ], [ (a4xpsl(3,4))):2, 1 ] ]
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and thus M(G, s) = {J2.2, J2.2, (A4 × L3(4)):2}.
We now define a related function MU which takes as input the name of a group G and

returns a pair [µ,L] where µ = µ(G) := mins∈G |M(g, s)| and L is the list of names of
conjugacy classes sG with |M(G, s)| = µ(G).

MU:= function( G )

local tbl, mx, prims, sums, mu, mins;

tbl:= CharacterTable( G );

names:= AtlasClassNames( tbl );

mx:= List( Maxes(tbl), CharacterTable );

prims:= List( mx, x -> TrivialCharacter( x )^tbl );

sums:=Sum(prims);

mu:= Minimum(sums);

mins:=List(PositionsProperty(sums,s -> s = mu), p-> names[p]);

return [mu, mins];

end;

For example, MU("Suz") returns [ 3, [ "14A", "21A", "21B" ] ]. In particular,
this shows that µ(Suz) = 3.

1.1.2. Probabilistic methods. The function ProbabilisticMethod implements the proba-
bilistic method described in [6, Section 2.2] to compute an upper bound on the uniform
domination number. The function takes as input the name of a group G and the name of

a conjugacy class sG. It returns the least positive integer c such that Q̂(G, s, c) < 1 (see
[6, (2.3)]). If no such integer c exists, then the function will not halt.

ProbabilisticMethod:= function( G, s )

local tbl, mx, prim, spos, nonz, fprs, tot, size, orde, leng, i, j,

c, prob;

tbl:= CharacterTable( G );

mx:= List( Maxes(tbl), CharacterTable );

prim:= List( mx, x -> TrivialCharacter( x )^tbl );

spos:= Position( AtlasClassNames( tbl ), s );

nonz:= PositionsProperty( prim, pi -> pi[spos] <> 0 );

fprs:= List( prim, pi -> pi/pi[1] );

size:= SizesConjugacyClasses( tbl );

orde:= OrdersClassRepresentatives( tbl );

leng:= Length( size );

tot:=[];

for i in [ 1 .. Length( nonz ) ] do

tot:= tot + prim[ nonz[i] ][ spos ]*fprs[ nonz[i] ];

od;

c:=0;

prob:=2;

while prob > 1 do

c:=c+1;

prob:=0;

for j in [ 2 .. leng ] do

if IsPrime(orde[j]) then
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prob:= prob + size[j]*tot[j]^c;

fi;

od;

od;

return c;

end;

For example, ProbabilisticMethod("G2(3)","13A") returns 5, which tells us that
γu(G2(3)) 6 5 (witnessed by the class 13A).

1.2. Magma functions. The character-theoretic methods described in Section 1.1 are
not always available. For example, GAP may not store the character tables of all maximal
subgroups of the group in question. In such cases we compute directly in the group, and
we prefer to use Magma [1] for this. In this section we present our Magma functions.

1.2.1. Fixed point ratios. The function FixedPointRatio determines the fixed point ratio
fpr(g,G/H) of an element g ∈ G in the action of G on the coset space G/H. It takes as
input a group G, a subgroup H of G and an element g ∈ G. The function returns the
fixed point ratio fpr(g,G/H).

FixedPointRatio:= function( G, H, g )

count:=0;

classreps:=Classes(H);

for rep in classreps do

if (rep[1] eq Order(g)) then

if (IsConjugate(G,g,rep[3])) then

count:=count+rep[2];

end if;

end if;

end for;

return count*Order(Centraliser(G,g))/Order(G);

end function;

1.2.2. Maximal subgroups. The function MaximalOvergroups provides information about
the maximal overgroups of an element. The input is a group G and an element s of G. The
function returns a pair of lists [H1, . . . ,Hm] and [k1, . . . , km], where the Hi are pairwise
non-conjugate maximal subgroups of G and ki is the number of conjugates of Hi which
contain s.

MaximalOvergroups:= function( G, s )

groups:=[];

mults:=[];

maxes:=MaximalSubgroups(G : OrderMultipleOf:=Order(s));

for M in maxes do

H:=M‘subgroup;

count:=FixedPointRatio(G,H,s)*Order(G)/Order(H);

if (count ne 0) then

groups:=Append(groups,H);

mults:=Append(mults,count);

end if;

end for;

return <groups, mults>;

end function;

For example, suppose we wish to determine the maximal subgroups of the alternating
group A11 which contain a fixed 11-cycle s. The following code
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G:=AlternatingGroup(11);

s:=G!(1,2,3,4,5,6,7,8,9,10,11);

MaximalOvergroups(G,s);

returns

<[

Permutation group acting on a set of cardinality 11

Order = 7920 = 2^4 * 3^2 * 5 * 11

(1, 8)(2, 10)(3, 11)(5, 7)

(1, 11, 10, 9)(2, 4, 7, 6),

Permutation group acting on a set of cardinality 11

Order = 7920 = 2^4 * 3^2 * 5 * 11

(1, 10)(2, 8)(3, 11)(5, 7)

(1, 4, 7, 6)(2, 11, 10, 9)

], [ 1, 1 ]>

from which it is easy to verify that the maximal overgroups of s are two non-conjugate
subgroups isomorphic to the Mathieu group M11 (runtime: 0.010s).

The corresponding function for computing µ(G) is as follows:

MU:= function( G )

cl:=Classes(G);

mu:=&+MaximalOvergroups(G,cl[1][3])[2];

for i in [2..#cl] do

sum:=&+MaximalOvergroups(G,cl[i][3])[2];

if sum lt mu then

mu:=sum;

end if;

end for;

return mu;

end function;

For example, MU(AlternatingGroup(11)) returns 2, showing that µ(A11) = 2 (runtime:
3.540s).

1.2.3. Probabilistic methods. Here we present a Magma implementation of the probabilis-
tic method for bounding the uniform domination number. As before, the function takes
as input a group G and an element s of G. It returns the least positive integer c such that

Q̂(G, s, c) < 1. If no such integer c exists, then the function will not halt.

ProbabilisticMethod:= function( G, s )

maxover:=MaximalOvergroups(G,s);

max:=maxover[1];

mult:=maxover[2];

classes:=Classes(G);

c:=0;

prob:=2;

while prob ge 1 do

c:=c+1;

prob:=0;

for j in [ 2 .. #classes ] do

if IsPrime(classes[j][1]) then

tot:=0;

for i in [1..#mult] do
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tot:=tot+mult[i]*FixedPointRatio(G,max[i],classes[j][3]);

end for;

prob:= prob + classes[j][2]*tot^c;

end if;

end for;

end while;

return c;

end function;

For example, consider the uniform domination number of the orthogonal group Ω+
10(2)

with respect to a class of elements of order 51 (these elements act as 2− ⊥ 8− on the
natural module, see [6, Section 6.1]). Then

G:=POmegaPlus(10,2);

order:=0;

while order ne 51 do

s:=Random(G);

order:=Order(s);

end while;

ProbabilisticMethod(G,s);

returns 5, whence γu(Ω+
10(2)) 6 5 (runtime: 2.260s).

1.2.4. Random and exhaustive searches. In this section we present three examples to ex-
plain how we use Magma to conduct random and exhaustive searches for uniform domi-
nating sets.

First we present a function PrimeUnion, which we will use in the examples below. This
function takes as input a group G and an element s ∈ G, and it returns a set of elements
which generate the prime order subgroups of the maximal subgroups of G containing s.
Note that this function calls MaximalOvergroups (and hence FixedPointRatio).

PrimeUnion:= function( G, s )

N:=Normaliser(G,sub<G|s>);

V:=[];

max:=MaximalOvergroups(G,s);

for i in [1..#max[1]] do

M:=max[1][i]; n:=max[2][i];

A:=[];

repeat

repeat

g:=Random(M);

a,x:=IsConjugate(G,g,s);

until a eq true;

Mx:=Conjugate(M,x);

orb:=Orbit(N,Set(Mx));

for O in orb do

if O in A eq false then

A:=Append(A, O);

for u in O do

if IsPrime(Order(u)) and

#({x : x in V} meet {u^i : i in [1..Order(u)]}) eq 0 then

V:=Include(V,u);

end if;

end for;
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end if;

end for;

until #A eq n;

end for;

return V;

end function;

Example. To prove that A13 has a uniform dominating set consisting of two conju-
gate 13-cycles we proceed as follows. (We require PrimeUnion, MaximalOvergroups and
FixedPointRatio to be defined.)

G:=Alt(13);

s:=G!(1,2,3,4,5,6,7,8,9,10,11,12,13);

V:=PrimeUnion(G,s);

done:=false;

for i in [1..1000] do

x:=Random(G); x:=s^x;

check:=true;

for g in V do

if not(#sub<G|x,g> eq #G) then

check:=false;

break;

end if;

end for;

if check eq true then

done:=true;

print[s,x];

break;

end if;

end for;

This prints a uniform dominating set for A13 of size 2 (runtime: 3.560s).

Example. Similarly, to find four elements in 10A which form a uniform dominating set
for M12 we proceed as follows:

load m12;

cl:=Classes(G);

s:=cl[13][3];

V:=PrimeUnion(G,s);

done:=false;

for i in [1..1000] do

x:=Random(G); x:=s^x;

y:=Random(G); y:=s^y;

z:=Random(G); z:=s^z;

check:=true;

for g in V do

if not((#sub<G|x,g> eq #G) or (#sub<G|y,g> eq #G)

or (#sub<G|z,g> eq #G)) then

check:=false;

break;
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end if;

end for;

if check eq true then

done:=true;

print[s,x,y,z];

break;

end if;

end for;

This prints a uniform dominating set for M12 of size 4; see Proposition 2.4 (runtime:
1.310s).

Example. The following code can be used to prove that M12 does not have a uniform
dominating set consisting of three elements in the class 6A:

load m12;

cl:=Classes(G);

s:=cl[9][3];

V:=PrimeUnion(G,s);

C:=Class(G,s);

U:={};

for c in C do

if #({x : x in U} meet {c^i : i in [1..Order(c)]}) eq 0 then

U:=Include(U,c);

end if;

end for;

test:= function( x, y )

success:=1;

for g in V do

if not((#sub<G|g,x> eq #G) or (#sub<G|g,y> eq #G)) then

success:=0;

break;

end if;

end for;

return success;

end function;

U:=[x : x in U];

success:=0;

for i in [1..#U-1] do for j in [i+1..#U] do

if test(U[i],U[j]) eq 1 then

success:=1;

break i;

end if;

end for; end for;

print success;

This prints 0, which justifies the claim (runtime: 17613s; memory: 13 MB).

2. Results

In this section we explain the computational results that are needed in [6], in terms of
the GAP and Magma functions described in the previous section.
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2.1. Alternating groups.

Proposition 2.1. The values of µ(An) in the following table are correct. Moreover, we
have µ(An) = |M(An, s)| for any s ∈ An with the given cycle-shape.

n 5 6 7 9 11 13 15 17 19 21 23
µ(An) 1 2 2 3 2 3 3 2 1 3 2
s [5] [5, 1] [7] [5, 22] [11] [9, 22] [11, 22] [17] [19] [17, 22] [23]

Proof. Use the functions MU and MaximalOvergroups in GAP if n 6 13, and in Magma if
n > 15. �

Proposition 2.2. The information on the uniform domination number γu(An) in the
following table is correct.

n 5 6 7 9 11 13 15 17 23 31
γu(An) 3 4 4 6 6 3 2 6 6 2 2 2

Proof. We carry out all of these computations in Magma. Set G = An. For a proper
subgroup H < G, let b(G,G/H) be the base size of the action of G on the coset space
G/H.

First assume n = 5. To show that 3 is an upper bound we use ProbabilisticMethod

with a 5-cycle. The lower bound is obtained by exhaustive searches on each conjugacy
class. (This can also be verified by hand, using elementary arguments.)

Next suppose n = 6. By a random search we can find four conjugate 5-cycles which
form a total dominating set for G, so γu(G) 6 4. We show γu(G) > 4 by exhaustive
searches on each conjugacy class sG. In fact, it is sufficient to assume that s has shape
[4, 2] or [3, 3]; if not, then s is contained in the stabiliser H of a 1-set with b(G,G/H) = 4
(see [6, Section 2.1] for further details).

The case n = 7 is very similar. Here we carry out a random search with conjugate 7-
cycles to show that γu(G) 6 4, and we establish equality by means of an exhaustive search
on each class sG (by considering base sizes, it is helpful to note that we may assume s has
shape [7] or [3, 22]).

Now assume n = 11. To see that γu(G) 6 3, use ProbabilisticMethod with an 11-
cycle. To get equality, we apply the following results on base sizes. Let s ∈ G. If s is not an
11-cycle, then s is contained in an intransitive subgroup H and [11, Theorem 3.1] implies
that b(G,G/H) > dlog2 ne − 1 = 3. If s is an 11-cycle then s is contained in a subgroup
H = M11 (see the proof of Proposition 2.1) and [5, Theorem 1] gives b(G,G/H) = 3.
Therefore, γu(G) > 3 and thus γu(G) = 3 as claimed.

For n = 13, a random search identifies two conjugate 13-cycles which form a uniform
dominating set (see the first example in Section 1.2.4). Indeed, one can check that {s1, s2}
has the desired property, where

s1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

s2 = (1, 2, 3, 4, 5, 6, 8, 9, 12, 7, 11, 10, 13).

Finally, if n ∈ {9, 15, 17, 23, 31} then use ProbabilisticMethod with an n-cycle. �

2.2. Sporadic simple groups.

Proposition 2.3. For each sporadic simple group G, the value of µ(G) is given in the
second column of Table 1. Moreover, µ(G) = |M(G, s)| for s ∈ G in the conjugacy class
recorded in the fourth column.

Proof. If G = B or M, then [10, Table IV] gives µ(G) = |M(G, s)| = 1. In the remaining
cases, use MU and MaximalOvergroups in GAP. �
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G µ(G) γu(G) s M(G, g) b c
M11 1 4 11A L2(11) 4
M12 3 4 10A A6.2

2, A6.2
2, 2× S5 6

M22 1 3 11A L2(11) 3
M23 1 2 23A 23:11 2
M24 2 3 or 4 21A L3(4):S3, 26:(L3(2)× S3) 4
J1 1 2 15A D6 ×D10 2
J2 3 3 or 4 10C 21+4:A5, A5 ×D10, 52:D12 4
J3 2 2 or 3 19A L2(19), L2(19) 3
J4 1 2 43A 43:14 2
HS 2 3 or 4 15A S8, 5:4×A5 4
Suz 3 3 14A J2:2, J2:2, (A4 × L3(4)):2 3
McL 3 3 15A 31+4:2.S5, 2.A8, 51+2:3:8 3
Ru 1 2 29A L2(29) 2
He 1 2 or 3 17A Sp4(4):2 4

21A 3.S7, 71+2:(3× S3), 3
7:3× L3(2), 7:3× L3(2)

Ly 1 2 28A 2.A11 2
O′N 2 2 31A L2(31), L2(31) 2
Co1 1 2 or 3 26A (A4 ×G2(4)):2 3
Co2 1 3 23A M23 3
Co3 1 3 23A M23 3
Fi22 1 3 or 4 22A 2.U6(2) 5

16A 25+8:(S3 ×A6), 2.21+8:(U4(2):2) 4
210:M22,

2F4(2)′ (4 times)
Fi23 1 2 35A S12 2
Fi′24 1 2 29A 29:14 2
HN 1 2 or 3 22A 2.HS.2 3
Th 2 2 19A U3(8):6, L2(19):2 2
B 1 2 47A 47:23 2
M 1 2 59A L2(59) 2

Table 1. Sporadic simple groups

Proposition 2.4. Let G be a sporadic simple group. Then

d− ε 6 γu(G) 6 d,

where d is defined as follows:

G M11 M12 M22 M23 M24 J1 J2 J3 J4 HS Suz McL Ru
d 4 4 3 2 4∗ 2 4∗ 3∗ 2 4∗ 3 3 2

He Ly O′N Co1 Co2 Co3 Fi22 Fi23 Fi′24 HN Th B M
3∗ 2 2 3∗ 3 3 4∗ 2 2 3∗ 2 2 2

Here an asterisk indicates that ε = 1; otherwise ε = 0 and γu(G) = d. In particular,
γu(G) 6 4, with equality if G = M11 or M12.

Proof. If µ(G) = 1, then choose s ∈ G such that M(G, s) = {H} and the base size
b(G,G/H) is minimal (the base size of every almost simple primitive group with sporadic
socle has been computed; see [7, 12]), and note that γu(G) 6 b(G,G/H) (see [6, Section
2.1]). The minimal base size is denoted by b in Table 1. In particular, γu(G) = 2 if G = B
or M.
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For each sporadic simple group G 6∈ {B,M} and each class representative s ∈ G we use
the function ProbabilisticMethod in GAP to obtain an upper bound γu(G) 6 c. For
the groups with µ(G) = 1, we almost always find that b 6 c; the exceptions are the cases
G ∈ {He,Fi22}, where it is better to apply the probabilistic method with an element s ∈ G
with |M(G, s)| > 1. For these two groups, and also for those with µ(G) > 1, we record the

minimal value of c in Table 1, together with an element s ∈ G such that Q̂(G, s, c) < 1.
For example, if G = He and s ∈ 17A then Table 1 indicates that M(G, s) = {H} with
H = Sp4(4).2 and b(G,G/H) = 4. However, if we choose s ∈ 21A then |M(G, s)| = 4 and

Q̂(G, s, 3) < 1, so γu(G) ∈ {2, 3}.
To derive a lower bound on γu(G), we again exploit the connection with base sizes. For

example, if G = M11 then every element of G is contained in a subgroup H isomorphic
to L2(11) or M10; in both cases b(G,G/H) = 4, which implies that γu(G) > 4. With
the exception of G = M12, this explains how we obtain the results on γu(G) presented in
Table 1.

For G = M12, this approach only gives 3 6 γu(G) 6 6, but by carrying out a random
search in Magma (see Section 1.2.4) one can show that the class 10A contains a uniform
dominating set of size 4. For example, if

G = 〈(4, 10)(6, 8)(7, 9)(11, 12), (1, 10, 2)(3, 7, 11)(4, 6, 5)(8, 12, 9)〉 ∼= M12

then {s1, s2, s3, s4} has the desired property, where

s1 = (1, 6, 11, 5, 3, 2, 7, 9, 4, 8)(10, 12)

s2 = (1, 2, 7, 5, 8, 12, 11, 10, 9, 4)(3, 6)

s3 = (1, 8)(2, 11, 9, 7, 12, 4, 5, 3, 10, 6)

s4 = (1, 9, 12, 10, 2, 6, 11, 5, 7, 3)(4, 8)

This allows us to conclude that γu(G) ∈ {3, 4}.
In fact, we claim that γu(G) = 4. To see this, we proceed as follows. First, we use the

GAP function MaximalOvegroups to determineM(G, s) for an element s in each non-trivial
conjugacy class of G. By combining the base size results in [7] with [6, Corollary 2.3], we
quickly reduce the problem to the conjugacy classes labelled 3B and 6A. In each case, we
need to show that the given conjugacy class does not contain a uniform dominating set
of size 3. In fact, since the square of an element in 6A is in the class 3B, we only need to
consider the class 6A. The required exhaustive search can now be carried out in Magma,
using the code presented in the final example of Section 1.2.4. �

2.3. Exceptional groups.

Proposition 2.5. The values of µ(G) in the following table are correct. Moreover, we
have µ(G) = |M(G, s)| for s ∈ G in the given conjugacy class.

G F4(2) 2F4(2)′ G2(3) G2(4)
µ(G) 2 2 3 1
s 17A 16A 13A 21A

Proof. For G 6= F4(2), we use MU and MaximalOvergroups in GAP, so for the remainder
let us assume G = F4(2). In this case, the function Maxes in GAP does not return the
maximal subgroups of G; however, GAP does contain the character table, and associated
fusion maps, of the maximal subgroups of G isomorphic to Sp8(2) and (21+8× 26):Sp6(2).
We manually adapt our previous code from ProbabilisticMethod as follows:

tbl:= CharacterTable( "F4(2)" );

names:=AtlasClassNames( tbl );

NamesOfFusionSources( tbl );
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partial:=["(2^(1+8)x2^6):S6(2)", "F4(2)M2", "S8(2)", "F4(2)M4"];

mx:= List(partial, CharacterTable );

sums:= Sum(List( mx, x -> TrivialCharacter( x )^tbl ));

p0:=List(PositionsProperty(sums,s -> s = 0), p-> names[p]);

p1:=List(PositionsProperty(sums,s -> s = 1), p-> names[p]);

This verifies that every element of G is contained in at least two maximal subgroups of
this type, except for elements in 13A, which are contained in none, as well as elements in
21A, 21B, 28A, 28B, which are in exactly one.

The subgroups L4(3), 3D4(2).3 and 2F4(2) all contain elements of order 13, and since
13A is the unique class in G of elements of order 13, any 13A element must be contained
in at least one conjugate of each of these subgroups.

The subgroup 3D4(2) contains elements of order 21 and 28. Since there is a unique class
of elements of order 21 in Aut(F4(2)), the maximal overgroups of elements in 21A and 21B

will be isomorphic. The same applies to elements of order 28. In particular, every element
of order 21 and 28 is contained in a subgroup isomorphic to 3D4(2).

Therefore, every element of G is contained in at least two maximal subgroups. By
[10, Proposition 6.2], if s has order 17 then M(G, s) = {H,K} where H ∼= K ∼= Sp8(2).
Therefore, µ(F4(2)) = 2 and the proof of the proposition is complete. �

Proposition 2.6. The upper bounds on γu(G) in the following table are correct.

G F4(2) 2F4(2)′ G2(3)
γu(G) 6 5 4 5
s 17A 16A 13A

Proof. For G = F4(2) we proceed as in the proof of Proposition 2.5:

tbl:= CharacterTable( "F4(2)" );

partial:=["S8(2)", "F4(2)M4"];

mx:= List(partial, CharacterTable );

prim:= List( mx, x -> TrivialCharacter( x )^tbl );

spos:= Position( AtlasClassNames( tbl ), "17A" );

fprs:= List( prim, pi -> pi/pi[1] );

size:= SizesConjugacyClasses( tbl );

orde:= OrdersClassRepresentatives( tbl );

leng:= Length( size );

tot:= prim[1][ spos ]*fprs[1] + prim[2][ spos ]*fprs[2];

c:= 0;

prob:= 2;

while prob > 1 do

c:= c+1;

prob:=0;

for j in [ 2 .. leng ] do

if IsPrime(orde[j]) then

prob:= prob + size[j]*tot[j]^c;

fi;

od;

od;

Print(c);
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In the two remaining cases, we use ProbabilisticMethod in GAP, with an element
s ∈ G as indicated in the table. �

2.4. Classical groups.

Proposition 2.7. The values of µ(G) in the following table are correct. Moreover, we
have µ(G) = |M(G, s)| for the given element s ∈ G.

G PΩ+
8 (3) Ω+

8 (2) Ω7(3) U6(2) Sp6(2) U4(3)
µ(G) 7 7 3 4 2 5
s 14A 15A 14A 11A 15A 9A

Proof. In all cases, use MU and MaximalOvergroups in GAP. �

Proposition 2.8. The upper bounds on γu(G) in the following table are correct.

G Ω+
10(2) L9(2) L8(2) PΩ+

8 (3) L7(2) PSp6(3)
γu(G) 6 5 7 9 19 6 3
s 2− ⊥ 8− 4⊕ 5 3⊕ 5 14A 105A 14A

U6(2) L4(2) U4(3) U4(2) U3(5) L2(7)
6 4 16 8 13 3

11A 15A 9A 9A 13A 7A

Proof. In each case we use the function ProbabilisticMethod, with the element given
in the table. More precisely, we use Magma when G = Ω+

10(2), L9(2) or L8(2) (see the
example in Section 1.2.3 for the case G = Ω+

10(2)), and GAP in the remaining cases. �

3. Resources

For the computations, we use a combination of GAP Version 4.5.6 and Magma 2.19-
2, on a 2.7GHz machine with 128 GB RAM. The character-theoretic computations run
quickly in GAP and we adopt this approach whenever possible. The computations in
Magma for determining maximal overgroups of specific elements and implementing the
probabilistic approach (via fixed point ratios) are more resource-intensive, but still feasible
for the groups we are interested in. For example, an implementation of the probabilistic
method applied to L9(2) with an element of order 465 (see Proposition 2.8) can be done
in 616 seconds, using 771 MB of memory. Similar resources are needed for most of the
exhaustive searches in Magma, which we use to rule out the existence of total domination
sets with prescribed properties. As discussed in Section 2.2, the verification of the bound
γu(M12) > 4 is a notable exception in terms of runtime. For example, the computation to
rule out the existence of a uniform domination set of size 3 in the class 6A was timed at
17613 seconds (using 13 MB of memory).
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