
Using LATEX

Scott Harper

Abstract

LATEX is the standard means of preparing a mathematical document. This guide is intended
to provide an introduction to using LATEX and highlight some of its key features. A miscellany
of various tips and tricks has also been included. Once some basic familiarity with LATEX has
been obtained, it is recommended that the reader consult the associated .tex file in parallel with
reading this guide.

1 Introduction
LATEX is the standard means of preparing a mathematical document. This is for some very good
reasons: it produces attractive looking documents; it is free; and it makes some potentially difficult
tasks very easy. However, if you have never used LATEX before, then you will have to allow a little
time to get used to using it. As with many things, LATEX is best learned through practice. As such,
I believe that the best approach to LATEX is to start writing a document and look up the things you
don’t know how to do. However, there are two main problems with this approach alone. How do
you learn the very basics? And how do you handle some more obscure issues when you become
more advanced? This guide is aimed at these two ends of the learning process.

I hope that by reading the main body of this guide, in parallel with looking at the associated .tex

file and trying out the features highlighted, you should quite quickly be comfortable with how LATEX
works. After this, when you come to use a particular command and cannot remember the details you
can quickly look these details up in this guide or (probably more quickly) online. The features set off
by a black vertical line are not intended to be read on the first reading, but rather these are advanced
features or typesetting tips, which are the result of personal experience. I hope that collecting these
titbits together in one document will serve as a useful resource for anyone who comes across similar
problems which are less easily solved by a quick internet search, or for someone who wants to help
polish their LATEX or typesetting technique.

Unlike producing working LATEX code, typesetting is necessarily a more subjective topic; however, at
times it is difficult to separate these two ideas. Where comments on typesetting are made, these reflect
my personal taste and I expect some to disagree with me. I have attempted to maintain consistency
with the New Oxford Style Manual [3] (which incorporates the current incarnation of Hart’s Rules).

Three caveats: I do not seek to be authoritative. To the best of my knowledge the content of this guide
is correct, but I do not doubt that it may contain errors or that I may have missed more efficient or
elegant methods. Any errors or suggestions would be most welcome. I do not seek to be comprehensive.
Even if a LATEX guide could be comprehensive it would be to long to be useful. I have aimed to
introduce the core features of LATEX but this will have undoubtedly been skewed by personal interests.
The selection of titbits is a product of my (pretty short) experience of LATEX. I do not seek to be technical.
I am not a computer scientist, nor do I claim to have a great knowledge of the inner workings of
LATEX. This guide unashamedly reflects this and, thus, is written from a user-focussed perspective.

1



2 Getting Started

2.1 Getting LATEX

LATEX is a mechanism by which one writes a source file – a plain text file with file extension .tex –
and transforms this into a high quality document (usually a PDF). The source file contains both the
content of your document and instructions on how this content should be presented. Therefore, you
will need an editor for writing the .tex file and a compiler to create final document.

The fastest way to begin doing this – but one which is not free of disadvantages – is the online
resource Overleaf. In your browser there will be two panels: in one you write your .tex file and
the other will show the compiled PDF when you click “Recompile”. Overleaf has capabilities for
multiple users sharing files and working on the same document at once.

In the long run, working on your desktop, rather than the browser, is probably recommended. In this
case, you should download a LATEX editor – for example, TeXstudio – and a compiler. For the latter, I
recommend that Mac users download MacTeX [10] and Windows users download MiKTeX [11]. Of
course, if you prefer you can work in the terminal. Here you can use your favourite text editor to
write the .tex file, then you can compile using pdflatex.

2.2 Your first document

Let us begin by explaining how to produce your first LATEX file. Open your LATEX editor (for example,
TeXstudio, Overleaf or vim) and write the following basic LATEX file.

\documentclass{article}

\begin{document}

This is a very simple document.

\end{document}

Save this file as first.tex, then compile this document. Your LATEX editor’s manual should make it
clear how to do this: in Overleaf click the “Recompile” button and in TeXstudio click the play button.
More files will have appeared in the folder where you saved the file first.tex. One of these files
will be first.pdf. This compiled document should include “This is a very simple document.” and
nothing else (other than a page number).

If you managed this, then you can now write any document, provided that it consists only of text
and provided you don’t want to change the formatting of the document. In Section 3, we look at how
to do much more exciting things. However, we will conclude this section by explaining some of the
essential background to LATEX.

2.3 The basics

2.3.1 The outline of a LATEX document

Every LATEX file begins with the line \documentclass{?} where ? is your choice of the document class.
Possible document classes include article, report and book. For the purpose of this guide we may
assume that the document class is article. Other document classes, unsurprisingly, provide features
suitable for producing other classes of documents (see [14, Document Structure/Document classes]).

Every LATEX file contains the line \begin{document} and later \end{document}. All lines between
these two, contribute directly to output file. The lines before these are known as the preamble, where
general commands are placed which affect the entire document.

2



Some features of LATEX require extra packages to be loaded. To include a package named ? include
\usepackage{?} in the preamble. Multiple packages can be loaded in the same use of the command
\usepackage. For example, I recommend loading the following AMS packages in all documents:

\usepackage{amsmath, amssymb, amsfonts, amsthm}

2.3.2 Comments

To make comments (notes in the .tex file which do not influence the compiled file) preface the text
with %. All text on a line after a % will not be taken into account when the document is compiled.
For example, the following LATEX file would produce the same compiled document as the one in
Section 2.2.

\documentclass{article}

\begin{document}

This is a very simple document. % A comment

% Another comment

\end{document}

2.3.3 Spaces and paragraphs

LATEX considers multiple spaces the same as one. To manually add an extra space, use \. For example:

Spot the extra space \ in this.

Spot the extra space in this.

LATEX will not take into account the starting of a new line. To begin a new paragraph leave a blank
line. LATEX considers several blank lines the same as one, so you can use blank lines to make your
LATEX file easy to read.

Typesetting tip There are places where you will want to avoid a line breaking. For example, it
would be undesirable for “10 km” or “Dr Frankenstein” or “Theorem 42” to be broken over two
lines. In these situations, use a non-breaking space given by ~. For example, 10~km will not break
over two lines.

Typesetting tip By default LATEX inserts a larger space between sentences than between words. This
is the traditional method of spacing but has been abandoned by many authors. (For example, it is
the Oxford style to have the same size of space between words and sentences.) To make interword
spaces and intersentence spaces equal, include the command \frenchspacing in the preamble.

LATEX believes that a sentence has ended when a lower case letter then a full stop appear. (It chooses
not to believe that D. ends a sentence to ensure that John D. Smith has interword spacing between
D. and Smith.) Therefore, if you choose to have longer intersentence spaces, then you must take
the following precautions. First, if a sentence ends with a character that is not a lower case letter,
then an intersentence space must be manually added using the command \@. For example, “I want
a PhD. I am a student.” should be typeset as I want a PhD.\@ I am a student. Second, if a
lower case letter then a full stop occurs in the middle of a sentence, then a interword space must
be manually added using the command \. For example, the sentence “I want a doctorate, e.g. a
DPhil.” should be typeset as I want a doctorate e.g.\ a DPhil.

3



2.4 The title

The title section of a LATEX document is generated in two steps. First, include the information about
the document in the preamble. For example

\title{Alice’s Adventures in Wonderland}

\author{Lewis Carroll}

\date{\today}

sets the title as “Alice’s Adventures in Wonderland”, sets the author as “Lewis Carroll” and sets the
date as today’s date. Second, include the command \maketitle after the \begin{document} line to
print the title information.

2.4.1 Symbols

To insert inverted commas use ‘ to open and ’ to close. For example, ‘single’ gives ‘single’ and
‘‘double’’ gives “double”.

To insert a hyphen use -; for example, ice-cream gives “ice-cream”. To insert a dash use --; for
example, 9am--5pm gives “9am–5pm” and John -- my dad -- likes cats gives “John – my dad –
likes cats”.

Typesetting tip For pauses and parenthesis, the em dash (— given by ---) was traditionally used
instead of the en dash (– given by --). Most US writers and many UK writers now use the en
dash for all dashes. However many UK writers still use em dashes but leave no space either
side of the dash (the latter is done automatically in LATEX). This is the Oxford style. For exam-
ple, John---my brother---likes cats gives “John—my brother—likes cats”.

As we have already explained, the symbol % has a special meaning in LATEX. Therefore, simply typing
% will not lead to a percentage sign in the compiled file. Instead we must type \%. For this reason, we
say that % is a reserved symbol. The reserved symbols and how to write them are given below.

% ˆ ˜ $ & # { } \
\% \^{} \_ \~ \$ \& \# \{ \} \textbackslash{}

Other symbols, in addition to these reserved ones, can be included in a LATEX document by writing an
appropriate command beginning by with a backwards slash. For example \dots provides an ellipsis
. . . , \LaTeX provides the LATEX symbol and \pounds provides the pounds sterling symbol £. To find
out the command required for a particular symbol, use the Detexify app [9] or consult The Compre-
hensive LATEX Symbol List [4]. Observe that most symbols when they are included gobble the space that
follows them, so an additional space must be manually added after them. Therefore, in the middle
of a sentence the LATEX symbol is actually typeset as \LaTeX\.

There are many commands for including letters from other alphabets and diacritics. Examples of these
are given below.

ł ø
\l{} \o

à é û š ç ñ ö ő
\‘{a} \’{e} \^{u} \v{s} \c{c} \~{n} \"{o} \H{o}

Note the difference between the final two diacritics. The latter, the Hungarian double acute, is the
diacritic used in the name Paul Erdős.

To place a diacritic above an i or j, use the dotless versions of these letters provided by \i and \j; for
example na\"{\i}ve gives “naı̈ve”.

4



3 How to Use LATEX

3.1 Text formatting

To format text in LATEX, call a particular command then enclose the text you want to format in braces
{. . .}. The following commands are available:

• \textbf{bold font} gives bold font

• \textit{italic font} gives italic font

• \texttt{teletype font} gives teletype font

• \textsc{small caps} gives SMALL CAPS

To emphasise a word, use the command \emph; for example, \emph{maths} gives maths. This is
preferable to using \textit{maths} since it separates the content from the appearance. By default
\emph applies \textit, but if you later decide you want to emphasise your text by emboldening it
rather than italicising it, then you can change the definition of \emph and all your emphasised text
will change at once.

The document’s text size can be altered by passing an optional argument to the the \documentclass

command. For example, \documentclass[14pt]{article} will produce a document where the text
has size 14pt. Size of text within the document can be changed relative to this default size in the
following way. Notice that the arrangement of the command and braces differs from above.

• {\tiny far too small} gives far too small

• {\normalsize standard text} gives standard text

• {\Huge far too big} gives far too big
See [14, Fonts/Font styles] for a full list of available sizes. There are not many occasions for manually
changing the size of text. For example, section headings are bigger than body text and footnotes are
smaller.

Different colours can be used in a LATEX document. However, in general, there are better methods
of emphasis since you cannot guarantee that your document will be read in colour. To use colour
in LATEX load the xcolor package. Then the \textcolor command can be used to provide coloured
text. For example, \textcolor{red}{cats} will give cats [“cats” is in red]. The first argument of
\textcolor specifies the colour and the second argument is the text to be coloured. There are several
ways of specifying a colour. Many basic colours are available by name (such as red in this example),
and more colours can be called in this way by loading the xcolor package with the optional argument
dvipsnames. Alternatively, specific colours can be defined in the preamble, according to a choice of
colour models, then used later in the document. For more information see [14, Colors].

3.2 Sections and cross-referencing

To begin a new section of a document entitled “Proof of the Riemann Hypothesis”, include the line
\section{Proof of the Riemann Hypothesis}. Sections are automatically numbered. To create an
unnumbered section use the command \section*. Sections can have subsections and subsections
can have subsubsections. These are included using the \subsection and \subsubsection com-
mands, and these are numbered according to the section (and subsection, if appropriate) they are
contained in. For example, observe the numbering in this document.

To include a table of contents include the command \tableofcontents in the appropriate place in the
document. Yes, it is that easy!

5



LATEX makes light work of labelling components of the document and referring back to them. To label
a section, a figure or a table (see Section 3.6), or theorem (see Section 3.3.2) use the command \label.
For example \section{Cats} \label{sec:cats} creates a section entitled “Cats”, then gives that
section the label sec:cats. Labelling a section does not print anything in the document; rather, it
gives the section an internal name to allow us to refer to it later. To refer back to this section use the
command \ref. For example, Section~\ref{sec:cats} gives “Section 6”, if the section on cats is
the sixth section. If we later reorder our sections and the section on cats becomes the fourth section,
then Section~\ref{sec:cats} will update and change to “Section 4”. (Observe that we use a non-
breaking space between “Section” and the number, see Section 2.3.3.)

Advanced The imakeidx package allows you to make an index. First, include the command
\makeindex in the preamble, and include the command \printindex where you wish the index
to appear. Whenever you want a position in the document to be indexed use the command \index.
For example, \dots we study cats\index{cat} \dots will produce an item in the index called
“cats” and will give the page number where that except appears. Observe that the command
\index does not print anything in the main body of the document.

You can create subentries in an index, “see also” entries, main entries and multiple page entries.
You can also also format the index in many ways. For further details see [14, Indexing].

Unless your LATEX compiler has been set up especially, an extra step is required at the compilation
stage. Compile the document; this will produce a .idx file. Now run the makeindex on the .idx

file to produce a .igl file. Compile the document again; the index will appear.

3.3 Environments

3.3.1 Lists

The itemize environment allows bulleted lists; for example:

\begin{itemize}

\item First item

\item[*] Second item

\item Third item

\end{itemize}

• First item

* Second item

• Third item

Note that the itemize environment begins with \begin{itemize} and ends with \end{itemize}.
This is the general pattern for an environment. Each item in the list is preceded by the command
\item. This is the general pattern for a list environment.

In an itemize environment, by default, the symbol is a round black bullet, but the symbol for each
of the items can be changed by using the optional argument of the \item command.

The enumerate environment allows numbered lists.

\begin{enumerate}

\item First item

\item Second item

\item Third item

\end{enumerate}

6



1. First item

2. Second item

3. Third item

By default the numbering is in Arabic numerals, but the numbering system can be changed by using
the optional argument of the enumerate environment (if the enumitem package is loaded with the
optional argument shortlabels). The argument (i) provides lower case roman numerals in brackets
and A. provides upper case letters followed by a full stop. See Section 6 of the enumitem package
information for more details.

3.3.2 Mathematical environments

One can easily construct environments for typesetting definitions, the statements of theorems, proofs
and much beyond.

First, set up, in the preamble, the environments which will be used. A typical setup is the following:

\theoremstyle{definition}

\newtheorem{definition}{Definition}[section]

\newtheorem{remark}[definition]{Remark}

\newtheorem{example}[definition]{Example}

\newtheorem*{example*}{Example}

\theoremstyle{plain}

\newtheorem{lemma}[definition]{Lemma}

\newtheorem{proposition}[definition]{Proposition}

\newtheorem{theorem}[definition]{Theorem}

\newtheorem*{theorem*}{Theorem}

\newtheorem{corollary}[definition]{Corollary}

Before explaining how this setup works, observe that we can now include, for example, a defini-
tion, lemma and example as follows by using the now-available definition, lemma and example*

environments.

\begin{definition}

A positive integer is \emph{prime} if it has no proper non-trivial divisors.

\end{definition}

\begin{lemma}

Every positive integer is a product of primes.

\end{lemma}

\begin{example*}

$60 = 2^2 \cdot 3 \cdot 5$

\end{example*}

Definition 3.1. A positive integer is prime if it has no proper non-trivial divisors.

Lemma 3.2. Every positive integer is a product of primes.

Example. 60 = 22 · 3 · 5

Note that the text in the body of the definition and example are in upright font whereas the lemma is
italicised. This is a consequence of the definition and example* environments being defined after
the line \theoremstyle{definition} was called and lemma after \theoremestyle{theorem}.

7



Note that the definition and lemma are numbered as the section number then a full stop and then
the result within that section. This is because the definition environment was defined to be num-
bered according to the section (this explains the optional argument [section] in the definition of
the definition environment), and the lemma environment was defined to be numbered in the same
way as the definition environment (this explains the optional argument [definition] in the defi-
nition of the lemma environment). As with sections, mathematical environments can be labelled and
referred to later (see Section 3.2).

Note that the example is not numbered. This is because the example* environment was defined using
the \newtheorem* command, which creates unnumbered theoremlike environments.

For more information on creating theoremlike environments see [14, Theorems].

Typesetting tip If you begin a theorem (or a similar environment) with a list (such as itemize),
then the first item will be placed on the same line as the theorem heading. However, this is not
particularly attractive. To force the items to begin on the following line, insert \quad after the
\begin{theorem} line. For example, this code

\begin{theorem*} \quad

\begin{enumerate}[(i)]

\item $0+0=0$

\item $1\cdot1=1$

\end{enumerate}

\end{theorem*}

produces

Theorem.

(i) 0 + 0 = 0

(ii) 1 · 1 = 1

The proof environment provides an environment which begins with the word proof and ends with
a QED square; for example:

\begin{proof}

$1+1=2$.

\end{proof}

Proof. 1 + 1 = 2.

The optional argument of the proof environment allows the introduction to be something other than
“Proof.”; for example:

\begin{proof}[Proof of Fermat’s Last Theorem]

I have discovered a truly marvelous proof of this,

which this margin is too narrow to contain.

\end{proof}

Proof of Fermat’s Last Theorem. I have discovered a truly marvelous proof of this, which this margin is
too narrow to contain.

8



3.4 Macros

To avoid repeatedly typing the same commands to include symbols or format text, you can create
macros. Macros are written in the preamble and apply to the entire document. To create a macro use
the \newcommand command which takes two arguments: the name of the command and the definition
of the command.

For example, if the macro

\newcommand{\atlas}{\textsc{Atlas}}

is included in preamble, then throughout the document the command \atlas produces the ATLAS.

Macros can also take arguments. Here \newcommand takes an optional argument between the name
and the definition which is the number of arguments the new command will have. Then each of
these arguments are referred to as #1, #2, etc. in the definition. For example,

\newcommand{\bi}[1]{\textbf{\textit{{#1}}}

creates a command which takes one argument and returns that argument in bold italics. For example,
throughout the document, \bi{group theory} will produce group theory.

One cannot create a new command called \cats using \newcommand if there is already a command
called \cats. In this case, one should use the command \renewcommand, whose syntax is otherwise
the same as \newcommand. However, one should be very careful not to overwrite commands which
are already being made use of in the document.

3.5 Mathematics

3.5.1 Basic input

Normal writing, as we have discussed so far, is carried out in text mode. To include mathematical
notation, use math mode. There are two ways to enter math mode, which lead to two different styles
of presentation: inline and display. For inline math mode surround the expressions by $ and $, and for
display math mode surround the expressions by \[ and \]. For example, $z$ gives z inline whereas
\[ y = ax+b \] gives

y = ax + b

displayed. Notice that letters, numbers and keyboard symbols work as expected in math mode.

Advanced The old TEX mechanism for including maths inline was $ . . .$ and for display was
$$ . . .$$. The LATEX mechanism for inline is \( . . .\) and for display is \[ . . .\]. There are prob-
lems associated with using $$ . . .$$ for display mathematics, but many people still use $ . . .$ for
inline mathematics.

Use \sqrt to write roots. For example, $\sqrt{9}=3$ gives
√

9 = 3 and $\sqrt[3]{9-1}=2$ gives
3
√

9 − 1 = 2. Use \frac for fractions. For example, \[ \frac{1 + \sqrt{5}}{2} \] gives

1 +
√

5
2

and $\frac{1}{2} = 0.5$ gives 1
2 = 0.5. Use \binom for binomial coefficients. For example,

\[ \binom{n}{k} = \binom{n}{n-k} \]

gives (
n
k

)
=

(
n

n − k

)

9



Advanced Notice the size of \frac{a}{b} differs between inline maths and display maths. To
provide a display maths sized fraction in inline maths (or in display maths) use \dfrac{a}{b}, and
for an inline maths sized fraction use \tfrac{a}{b}. For example, here is the inline and display

output for \frac, \tfrac and \dfrac: 1
2 , 1

2 ,
1
2

and

1
2

, 1
2 ,

1
2

.

Use ^ to insert superscripts and _ for subscripts. For example, $x_n=n^2$ gives xn = n2. To include
longer expressions in a superscript or subscript, enclose the expression in braces { . . .}. For example,
$y_{ij}=2x^{10}$ gives yij = 2x10.

Advanced There may be occasion for superscripts and subscripts to the left of the main letter. The
makeshift way to achieve this is as follows: G M written as $_GM$. However, if the presuperscript or
presubscript follows another symbol one must include empty braces first to avoid the superscript
attaching itself to the previous symbol; compare the correct result G = 2F4 of $G={}^2F_4$ with the
incorrect result G =2 F4 of $G=^2F_4$.

This issue can be avoided by, instead, using the \prescript command from the mathtools pack-
age. This bespoke method has the added advantage of ensuring the prescripts are arranged appro-
priately around the main symbol. Here \prescript{a}{b}{X} gives a

bX and can be used to write
expressions like the following

A
ZX → A−4

Z−2Y + 4
2α.

To include some text in math mode, use the \text command. For example,

$\{ n^2 \mid n \ \text{is odd} \}$

gives {n2 | n is odd}. Observe that a manual space using \ was inserted before the \text command
since all space around text in math mode is gobbled.

To display a numbered equation, use the equation environment rather than using display math mode.
As with sections, equations can be labelled then referred to later, see Section 3.2. When an equation
is referred to use the command \eqref, rather than \ref, to ensure that the reference is enclosed in
brackets. For example:

\begin{equation} \label{eq:euler}

1^{i+\pi} = e^{0}

\end{equation}

By Euler’s equation \eqref{eq:euler}, \dots

1i+π = e0 (1)

By Euler’s equation (1), . . .

To label an equation by a symbol rather than a number, use the \tag command. For example:

\begin{equation} \label{eq:fermat}

3987^{12} + 4365^{12} = 4472^{12} \tag{$\dagger$}

\end{equation}

By Homer’s theorem \eqref{eq:fermat}, \dots

10



398712 + 436512 = 447212 (†)

By Homer’s theorem (†), . . .

To print a series of displayed equations which are aligned at the equals sign (or similar), use the align
environment. Each row is ended with \\, and on each row & is placed to indicate where the equations
should align. For example:

\begin{align}

\int \sec x \, dx &= \int \frac{\sec x(\sec x + \tan x)}{\tan x + \sec x}\,dx \\

&= \int \frac{(\sec x)^2 + \sec x \tan x}{\tan x + \sec x}\,dx \label{eq:ex} \\

&= \log|\tan x + \sec x| + C

\end{align}

∫
sec x dx =

∫ sec x(sec x + tan x)
tan x + sec x

dx (2)

=
∫

(sec x)2 + sec x tan x
tan x + sec x

dx (3)

= log | tan x + sec x|+ C (4)

By default, the lines in an align environment are numbered. Use the align* environment to omit
the numbering. As with the equation environment, a row can be labelled to be referred to later.

Typesetting tip If a proof ends at the end of an align environment then the QED square will
not appear on the final line of this environment but on the next blank line. This is not appealing.
Therefore, in this case, one should place the command \qedhere within the align environment
at the end of the proof to ensure that the QED square appears on the correct line. We present an
example of this.

\begin{proof}

Let $x, y \in k$. For all $1 \leq i \leq p$ the binomial coefficient

$\binom{p}{i}$ is divisible by $p$. Therefore,

\begin{align*}

(x+y)^p &= \sum_{i=0}^{p}\binom{p}{i}x^iy^{p-i} \\

&= x^p + y^p. \qedhere

\end{align*}

\end{proof}

Proof. Let x, y ∈ k. For all 1 ≤ i ≤ p the binomial coefficient (p
i ) is divisible by p. Therefore,

(x + y)p =
p

∑
i=0

(
p
i

)
xiyp−i

= xp + yp.

Advanced On occasions one might want to number just one line of an aligned display. This can
be done in an align* environment, by using the \tag command together with a manual manipu-
lation of the LATEX numbering system. We present an example of this without explanation. See [14,
Counters] for more information on numbering and LATEX counters.

11



\begin{align*}

g^{-1}hg &= ghg \\

&= ghghh \stepcounter{equation}\tag{\theequation}\label{eq:trick} \\

&= h

\end{align*}

g−1hg = ghg
= ghghh (5)
= h

3.5.2 Common symbols

Writing mathematics requires many more symbols than those available on the keyboard. These can
be included with special commands in math mode. For example \gamma and \Gamma give γ and Γ.
All Greek upper and lower case letters can be provided in this way; however, if an upper upper case
Greek letter matches an upper case Latin letter, then the command for the Greek letter is not defined
(e.g. \Alpha is not defined since upper case alpha is identical to the Latin A). For some Greek letters
there are optional variants. For example I prefer ε and φ provided by \varepsilon and \varphi over
the default ϵ and ϕ provided by \epsilon and \phi.

Standard mathematical symbols can be inserted in a similar way. (More obscure symbols may require
extra packages to be loaded.) For example:

\[ |x-a| \leq \delta \implies |f(x)-f(a)| \leq \varepsilon \]

|x − a| ≤ δ =⇒ | f (x)− f (a)| ≤ ε

The negation of a symbol can (usually) by achieved by preceding the symbol by \not. For example,
\not\in gives ̸∈. If you cannot guess the command for your required symbol, then you can use the
Detexify app [9] or consult The Comprehensive LATEX Symbol List [4].

Big mathematical symbols – for example for integrals, sums, products, unions, intersections – take
the form \symbol_{lower}^{upper} and these commands require a value for their lower and upper
bounds (even if you wish for one of these to be empty). For example, $\bigcup_{i \in I}^{} U_i$

gives
⋃

i∈I Ui and

\[ \sum_{n=1}^{\infty}\frac{\pi^2}{6}\]

gives
∞

∑
n=1

π2

6

Note the difference between display and inline. For more see [14, Mathematics/Sums and integrals].

Advanced To include multiple lines of text under a large operator, use the \substack command.
For example, \[ \sum_{\substack{i=0 \\ i \not\in A}}^{n} i^2 \] gives

n

∑
i=0
i ̸∈A

i2

12



Typesetting tip When defining a function use the correct arrows and colon. The expression

\[ f \colon \mathbb{R} \to \mathbb{R} \quad x \mapsto x^2 \]

f : R → R x 7→ x2

should be typeset using the command \to for the arrow → between sets and the command \mapsto

for the arrow 7→ defining how the function acts on elements. In addition, the colon between the
function name and the first set should be given using \colon and not : since the latter will provide
the incorrect space around the colon.

Typesetting tip When writing a set using set-builder notation be sure to use the correct commands
for the colon (use : and not \colon) or pipe (use \mid and not \div). (Whether one uses a colon or
a pipe is a matter of personal taste.) For example, both of the following sets are correctly typeset:

\[ \{ x \in \mathbb{R} \mid x^2 > 2 \} \]

{x ∈ R | x2 > 2}

\[ \{ x \in X : xg=x \text{ for all } g \in G \} \]

{x ∈ X : xg = x for all g ∈ G}

Some mathematical symbols such as R are simply letters in a particular style. There are several
commands to provide these styles in math mode. For example:

• roman maths given by \mathrm allows the algebraic group GLn

• fraktur maths given by \mathfrak allows the Lie algebra gln

and for upper case letters:

• blackboard maths given by \mathbb allows the real numbers R

• calligraphic maths given by \mathcal allows the power set P

• script maths given by \mathscr allows an alternative for the power set P . (The command
\mathscr requires the mathrsfs package.)

The text mode commands \textsf and \texttt which provide sans serif and typewriter fonts have
analogues in math mode: \mathsf and \mathtt.

3.5.3 Brackets and arrays

There are many types of brackets used in mathematics:

• standard brackets given by ( . . .) allow the expression (x + y)2

• square brackets given by [ . . .] allow the interval [0, 1]

• braces (or curly brackets) given by \{ . . .\} allow the set {0, 1, 2, . . . }

• angled brackets given by \langle . . .\rangle allow inner products ⟨v, w⟩

• single bars given by | . . .| allow the absolute value |x − y|

• double bars given by \| . . .\| allow norms ∥ f ∥

• floor and ceiling given by \lfloor . . .\rfloor and \lceil . . .\rceil allow ⌊x⌋ and ⌈y⌉

13



When enclosing a taller expression in brackets preface the left bracket by \left and the right bracket
\right. For example:

\[ \left| \frac{x}{y}-\frac{1}{2} \right| \leq \frac{|x|}{|y|}+\frac{1}{2}. \]∣∣∣∣ x
y
− 1

2

∣∣∣∣ ≤ |x|
|y| +

1
2

.

Typesetting tip When using using square brackets to denote an interval as part of a longer expres-
sion, enclose the entire interval in braces to ensure the spacing is correct. Moreover, if the lower
bound in a closed interval is negative then enclose the negative number in braces. For example
x \in [-\pi, \pi] gives x ∈ [−π, π] whereas x \in {[{-\pi}, \pi]} gives x ∈ [−π, π] . . . yes,
I promise the spacing is different!

The array environment is a very useful one: it allows us to write matrices, vectors, two-line permu-
tations, case definitions, tables and much beyond. We begin with an example of a matrix where we
produce an array and enclose it in the appropriate brackets:

\[

A = \left(

\begin{array}{rl}

\cos\theta & \sin\theta \\

-\sin\theta & \cos\theta \\

\end{array}

\right)

\]

A =

(
cos θ sin θ

− sin θ cos θ

)
The array environment takes one argument which can be a string of letters c, l, r, one for each
column. The text in each column will be justified depending on this letter: c for centred, l for left
aligned and r for right aligned. We write the entries of the matrix reading along the rows, separating
entries by & and rows by \\.

We now give an example of a case definition:

\[

\delta_{ij} = \left\{

\begin{array}{ll}

1 & \text{if $i=j$} \\

0 & \text{if $i \neq j$} \\

\end{array}

\right.

\]

δij =

{
1 if i = j
0 if i ̸= j

Although we do not need to close the brace in this example (that is, there is a left \{ but no right
\}), LATEX insists that we still match the \left with a \right. For this reason we include the empty
delimiter \right. which does not print anything but handles the LATEX bookkeeping.

Now we turn to tables. Vertical lines are achieved by inserting a pipe | between the columns in
the argument, and horizontal lines are achieved by inserting \hline between the rows. Here is an
example of a multiplication table:

14



\[

\begin{array}{c|cccc}

& e & a & b & c \\

\hline

e & e & a & b & c \\

a & a & e & c & b \\

b & b & c & e & a \\

c & c & b & a & e \\

\end{array}

\]

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

and here is an example of a standard table:

\[

\begin{array}{ccc}

\hline

x & |x^G| & C_G(x) \\

\hline

\mathrm{id} & 1 & G \\

(1\, 2)(3\, 4) & 15 & \langle (1\, 2)(3\, 4), (1\, 3)(2\, 4) \rangle \\

(1\, 2\, 3) & 20 & \langle (1\, 2\, 3) \rangle \\

(1\, 2\, 3\, 4\, 5) & 12 & \langle (1\, 2\, 3\, 4\, 5) \rangle \\

(1\, 2\, 3\, 5\, 4) & 12 & \langle (1\, 2\, 3\, 5\, 4) \rangle \\

\hline

\end{array}

\]

x |xG| CG(x)
id 1 G

(1 2)(3 4) 15 ⟨(1 2)(3 4), (1 3)(2 4)⟩
(1 2 3) 20 ⟨(1 2 3)⟩

(1 2 3 4 5) 12 ⟨(1 2 3 4 5)⟩
(1 2 3 5 4) 12 ⟨(1 2 3 5 4)⟩

To include tables in text mode rather than math mode, use the tabular environment instead of array.
The above guidance is valid for the tabular environment (see Table 1).

Advanced There are many further packages designed specifically for typesetting tables. For ex-
ample, the array package allows formatting of columns, booktabs allows one to produce very
attractive tables with appropriate vertical spacing and variable line widths, tabularx automati-
cally adjusts column widths and longtable allows tables which span more than one page. (See
Table 1 for an example using booktabs for variable line thickness.)

Typesetting tip Avoid vertical lines in tables and minimise the number of horizontal lines.

15



3.5.4 Dots and spacing

Ellipsis, three dots with appropriate spacing, is used to indicate omitted items. In text mode \dots

provided the standard ellipsis . . . but in math mode there are some subtleties. In some contexts the
dots should be on the base line (for example, when the items are separated by commas or are the
missing digits of a number), but in other contexts the dots should be raised (for example, when the
items are separated by addition signs or are part of a product).

The command \ldots provides the lower dots . . . and \cdots provides the raised dots · · · . The
command \dots tries to guess which of \ldots and \cdots is appropriate; this will not always be
correct. (In general, \dots will correctly provide \cdots when followed by a binary relation, but in
the cases where \cdots are desired to indicate a product or concatenation \cdots will need be used
explicitly.) For example:

\[ 1, 1, 2, 5, 8, \dots \quad 1 + 8 + 27 + \dots + n^3 \quad \pi = 3.14159\dots

\quad 1 \cdot 2 \cdot 3 \cdots 9 = 362880 \quad x = x_1 x_2 \cdots x_k \]

1, 1, 2, 5, 8, . . . 1 + 8 + 27 + · · ·+ n3 π = 3.14159 . . . 1 · 2 · 3 · · · 9 = 362880 x = x1x2 · · · xk

There are contexts when vertical or diagonal dots are required. One can use \vdots, \ddots and
(with the mathdots package) \iddots. This is particularly useful in matrices:

\[

A =

\left(

\begin{array}{cccc}

a_{11} & a_{12} & \cdots & a_{1n} \\

a_{21} & a_{22} & \cdots & a_{2n} \\

\vdots & \vdots & \ddots & \vdots \\

a_{m1} & a_{m2} & \cdots & a_{mn} \\

\end{array}

\right)

\]

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


In general, LATEX does spacing very well. However, there can be occasions where one needs to man-
ually add space in math mode. LATEX ignores any typed spaces in math mode, so the following
commands are useful for inserting and removing horizontal space. Here we use the unit mu which is
equal to 1

18 em. In turn, the unit em was historically equal to the width of a letter M in the font being
used but is now usually set at the current font size (see [14, Lengths]).

• \ provides a 6 mu space, which is a roughly normal space in text mode

• \; provides a 5 mu space

• \: provides a 4 mu space

• \, provides a 3 mu space, which is a thin space

• \, provides a negative 3 mu space

16



• \quad provides a 1 em space

• \qquad provides a 2 em space

Typesetting tip There are several important uses of the the thin space provided by \,.

• When typesetting units, be sure to insert a thin space between the number and the unit;
for example $3 \, \mathrm{mu}$ gives 3 mu. (If units will be used frequently then the one
should use a bespoke units package such as siunitx.)

• When writing permutations in cycle notation, if one leaves spaces between the points rather
commas then use a thin space; for example $(1 \, 2)(3 \, 4 \, 5)$ gives (1 2)(3 4 5).

• Insert a thin space between the product of two factorials. For example:

\[ \binom{n}{k} = \frac{n!}{(n-k)!\,k!}. \](
n
k

)
=

n!
(n − k)! k!

.

3.6 Images, floats and captions

To insert an image into a LATEX file, save the image file in the same folder as your .tex file and en-
sure that the image is a .png, .jpg or .pdf file. If the image is named fish.png, then the command
\includegraphics{fish.jpg} (from the graphicx package) will insert the image at the correspond-
ing place in the document.

By default, the image will be included at its original size. The command \includegraphics has
optional arguments which allow you to adjust the size. To specify the width of the image, use the
argument width=? (where ? is the desired width) and for height use height=?. If only one of the
width and height are specified, then the aspect ratio will be maintained from the original image (this
is generally recommended). The dimensions can be specified in any of the units LATEX understands
(for example, pt, cm, in, ex, em, see [14, Lengths]), but \textwidth, which is set to be the width of the
text in the document, is often very useful in this case. For example, the following image is centred, is
a quarter of the text width and has the same aspect ratio as the original image.

Often one does not wish images to appear in a particular position on the page but rather somewhere
nearby in the document which ensures that it fits on one page and does not interrupt the flow of the
document too much. LATEX has a way of doing exactly this: floats. By enclosing an image in a figure

environment the image will appear at an appropriate place nearby in the document, according to
LATEX’s internal principles. This is a great example of LATEX separating content (you inserting the
figure) and appearance (LATEX deciding the best place to put it).

Often one wants to float tables as well as images. This is achieved by using the table environment,
which is analogous to the figure environment introduced above.

17



animal collective noun

baboon troop
eagle convocation
hippo bloat
owl parliament

rhino crash
wombat wisdom

Table 1: Some collective nouns.

Advanced The figure (and table) environment take an optional argument to allow one to have
some say over where LATEX decides to place the figure: t and b encourage LATEX to place the figure at
the top or bottom a page; p encourages the figures to be placed on a page dedicated to figures (and
tables); h explains that, after all, you would actually quite like the figure to be where you placed it
in the file; and H (which requires the float package) explains, in no uncertain terms, that you really
want the figure where you placed it in the file. In all cases, following the argument by ! attempts
to make your opinion override LATEX’s.

It is useful to caption floating figures and tables. This can be done by placing the \caption command
above or below the image or table inside the float environment as shown in Table 1.

Advanced If the caption is placed above (or below) the image or table in the float environment,
then the caption will appear above (or below, respectively) the image or table. The standard type-
setting convention is that captions be placed below figures but above tables. However, the de-
fault LATEX spacing around floats and captions anticipates that caption the will be placed below all
floats. To customise the caption spacing – in addition to various other caption parameters such as
font, style and justification – use the caption package. In particular, to adjust the spacing around
captions to suit the standard convention, load the caption package with the optional arguments
[tableposition=top, figureposition=bottom].

3.7 Citations

As with cross-referencing, citations are something which could potentially be difficult but which LATEX
makes very easy. Citing documents comes in two parts. First, at the end of the document, one must
create a list of all of the references which are referred to in the document with an identifier (for
mathematical documents this is usually just a number) associated to each one. Second, one must
include a marker in the text whenever you want to cite a reference in the list.

The reference list can be produced in one of two ways: manually or automatically. To manually pro-
duce a reference list, create a thebibliography environment wherever you wish the list of references
to appear (this will typically be at the end of the document just before \end{document}). This en-
vironment has one argument which tells LATEX how long the identifying number might be for each
reference. Unless you plan to have at least 100 references, make this argument 99. Then, for each
reference, include something of the following form:

\bibitem{ref:wilson_09} R. A. Wilson, \textit{The Finite Simple Groups},

Graduate Texts in Mathematics vol. 251, Springer, 2009.

In this example, ref:wilson09 is the cite key, which we use to refer to this reference when we cite it,
and the details which follow are the bibliographic data of that reference. Note that the bibliographic
data will appear exactly as written and the references will be listed in the order they are included in
the file.

18



To create an inline citation of the above reference, simply include \cite{ref:wilson_09} wherever
you wish the citation to appear in the text; it appears as [7]. To refer to a particular result or sec-
tion of a text, use the optional argument. For example, \cite[Theorem~2.4]{ref:wilson_09} ap-
pears as [7, Theorem 2.4]. To include several citations, include them in one instance of \cite{}.
For example, write \cite{ref:cameron_81,ref:wilson_09} which gives [1, 7] rather than writing
\cite{ref:cameron_81} \cite{ref:wilson_09} which gives [1] [7].

Typesetting tip There are many different referencing styles and there is not a complete consensus
in mathematics. You should check the conventions of the relevant journal or university. However,
the following points are worth bearing in mind.

(i) The style of the items on the reference list of this document is common. For example, see [7]
for books, [1] for papers and [2] for chapters.

(ii) In mathematics journals, the inline marker for a citation is usually a number in square brack-
ets as in this document. This is the default in LATEX.

(iii) The standard ordering of references is: order alphabetically by the surname of the first author;
to break ties, place single author papers before joint papers; to break ties on joint papers, pass
to the second author, third author, . . . ; to break further ties, order by date of publication; to
break ties still, order alphabetically by the name of the work.

(iv) Journal names are usually abbreviated in a reference list. For a list of the standard journal
abbreviations, see [8].

Advanced BIBTEX provides a more automated way of producing reference lists. With this, one pro-
duces a separate BIBTEX file, named say references.bib, which contains the bibliographic data,
then includes the commands \bibliographystyle{plain} and \bibliography{references.bib}

at the end of the main LATEX file. Inline markers are still included using the \cite. To customise the
style of the references, replace plain by an alternative style or a bespoke .bst file. There are style
files for most major referencing styles. There are also programs for producing a .bst file based on
particular preferences. Alternatively, one can write one’s own in reverse Polish notation. For more,
see [14, Bibliography Management].

3.8 Page layout and paragraphing

The many optional arguments of the geometry package allow one to control the page layout. For
example, this document has geometry loaded with the arguments a4paper and margin=2cm to set
the page size to A4 (the default is US Letter) and set all margins to 2 cm. Lengths can be expressed
in many units such as pt, in, cm, ex, em (see [14, Lengths]). Each of the four margins can be set
separately by including top=3cm and similar. The orientation of the page can be changed by includ-
ing landscape. For more details, including how to set up asymmetric book style margins, see [14,
Page Layout] or the geometry package documentation.

Advanced By default, there is no vertical space between paragraphs and each paragraph (except
the first of each section) is indented. To change the paragraph indentation, include in the pream-
ble \setlength{\parindent}{?} where ? is the desired paragraph indentation width. A standard
typographical alternative is to have vertical space between paragraphs instead of paragraph inden-
tations. To change the interparagraph vertical spacing, use \setlength{\parskip}{?}. However,
changing the value of \parskip changes the spacing in lists in an often undesirable way. To com-
pensate for this, after loading the enumitem package in the preamble call \setlist{topsep=0pt}.

19



4 Looking Ahead

4.1 TikZ

TikZ ist kein zeichenprogramm or TikZ, for short, is not a drawing programme. Rather, TikZ is a
language for producing high quality graphics. Therefore, one can use TikZ to produce graphics in a
LATEX document by including additional code in the .tex file. This allows the graphics to be consistent
with the rest of the document in quality and style, and also allows the full LATEX functionality (math
mode, text formatting, cross-references) to be used in the production of the graphics. Drawing basic
geometric graphics is straightforward, as is drawing graphs (in the graph theoretic sense). There are
also libraries for drawing automata, fractals, knots and much else. Many complex graphics can be
produced by exploiting for loops, if statements and the ability to carry out arithmetic operations. The
TikZ and PGF manual [6] is the definitive resource for learning and using TikZ.

4.2 Beamer

In this document we have described how to produce a LATEX document using the document class
article or similar (see Section 2.3.1). To produce presentation slides, use the BEAMER document
class. With this document class, the .tex file is a collection of frame environments in which each
slide is written. Producing slides in BEAMER allows the full LATEX functionality to be used. See the
BEAMER manual for further details [5].

For more advanced BEAMER users we provide some useful tips.

Typesetting tip By default, text in BEAMER is typeset in sans serif font. Therefore, in math mode
use \mathsf rather than \mathrm for upright text. For example, use \mathsf{GL}_n(q), which
gives GL, rather than $\mathrm{GL}_n(q)$, which gives GL.

On a similar note, the default commas and full stops in BEAMER’s math mode are serif and do not
match the sans serif commas and full stops in text mode. (In particular, if the projector has a poor
resolution, in math mode, the commas look like full stops because the tails are too faint to be seen.)
To make the commas and full stops in math mode match those in text mode, add the following two
lines to the preamble:

\DeclareMathSymbol{,}{\mathpunct}{operators}{"2C}

\DeclareMathSymbol{.}{\mathpunct}{operators}{"2E}

Typesetting tip By default, a collection of navigation symbols appears in the bottom-right of
BEAMER slides. If you wish to remove these – which you should – then include the following
in the preamble:

\usenavigationsymbolstemplate{}

Typesetting tip In many styles, there is a space for the title, author and date in the footer of the
slides. If any of these are too long to fit in this space, or you otherwise wish to include a different
version of any of these in the footer, then you should make use of the optional arguments in the
\title, etc. commands. For example, if \date[14.03.2017]{14th March 2017} is included in the
preamble, then the date on the title slide will be “14th March 2017”, but the date in the footer will
be “14.03.2017”.

20



4.3 Sources of reference

The LATEX wikibook [14] is an excellent resource and is a good go-to reference. There are several
good LATEX tutorials online; Overleaf [12] is particularly good. The Detexify app (or website [9]) is an
invaluable resource for determining the command for a particular symbol. The BEAMER manual [5]
and the TikZ and PGF manual [6] are good references on these topics.

However, a quick internet search is usually the fastest way to solve a problem in LATEX. In particular,
most standard (and many very non-standard) questions have been asked and answered (in great
detail) on StackExchange [13].

Happy TEXing.

References
[1] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981),

1–22.

[2] J. Fulman and R. M. Guralnick, Derangements in simple and primitive groups, in Groups, Combi-
natorics & Geometry: Durham 2001, World Sci. Publ., (2003), 99—121.

[3] Oxford University Press, New Oxford Style Manual, Oxford University Press, Oxford, 2016.

[4] S. Pakin, The Comprehensive LATEX Symbol List, 2017,
mirror.ox.ac.uk/sites/ctan.org/info/symbols/comprehensive/symbols-a4.pdf

[5] V. Miletić, T. Tantau, J. Wright, The BEAMER class, 2017,
tug.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf

[6] T. Tantau, The TikZ and PGF Packages, 2013,
mirror.ox.ac.uk/sites/ctan.org/graphics/pgf/base/doc/pgfmanual.pdf

[7] R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, vol. 251, Springer, 2009.

[8] Abbreviations of Names of Serials, msc2010.org/MSC2010-CD/extras/serials.pdf

[9] Detexify, detexify.kirelabs.org/classify.html

[10] MacTeX, tug.org/mactex/mactex-download

[11] MiKTeX, miktex.org/howto/install-miktex

[12] Overleaf, www.overleaf.com

[13] TeX StackExchange, tex.stackexchange.com

[14] LATEX wikibook, en.wikibooks.org/wiki/LaTeX

21



Index

BIBTEX, 19
BEAMER, 20

brackets, 13

captions, 18
citations, 18
colour, 5
commands, 4, 9
comments, 3
compiler, 2
cross-references, 6, 8, 10

diacritics, 4
display, 9, 10–12
document class, 2, 20

editor, 2
environments, 6–8

align, 11
array, 14–15
enumerate, 6
equation, 10
figure, 17
frame, 20
itemize, 6
tabular, 15

floats, 17
formatting, 5, 20

text size, 5
text style, 5

images, 17
index, 6
inline, 9, 10, 12
itemize, 8

lists, 6–7

macros, 9
math mode, 9

numbering, 5, 10

packages, 3
booktabs, 15
caption, 18
enumitem, 7, 19
float, 18
geometry, 19
graphicx, 17
longtable, 15
mathrsfs, 13
mathtools, 10
siunitx, 17
tabularx, 15
xcolor, 5

page layout, 19
paragraphs, 19
pdflatex, 2
preamble, 2, 7, 19

sections, 5–6
source file, 2
spacing, 3

captions, 18
dashes, 4
gobble, 4, 10
math mode, 10, 13, 14, 16–17
non-breaking, 6
paragraphs, 19

subscripts, 10
superscripts, 10
symbols, 4

dashes, 4
hyphens, 4
inverted commas, 4
mathematical, 12
reserved, 4

table of contents, 5
tables, 14–15
text mode, 9
theorems, 7–8
TikZ, 20
title, 4

© Scott Harper 2024. This document is licensed under the Creative Commons Attribution-Share Alike 4.0 license.

22


