The Mathieu Groups (Simple Sporadic Symmetries)

Scott Harper (University of St Andrews)

Tomorrow's Mathematicians Today 21st February 2015

The Mathieu Groups (Simple Sporadic Symmetries)

Scott Harper (University of St Andrews)

Tomorrow's Mathematicians Today 21st February 2015

Symmetry

Scott Harper

Ξ.

・ロト ・四ト ・ヨト ・ヨト

Symmetry group: D₄

<ロ> (日) (日) (日) (日) (日)

c -		Ll e u	-
30	οιι	пar	pei

21st February 2015 3 / 15

3

Symmetry group: D₄

Symmetry group: D_4 Group of rotations: $\langle (1 \ 2 \ 3 \ 4) \rangle \cong C_4$

A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object.

Symmetry group: D_4 Group of rotations: $\langle (1 \ 2 \ 3 \ 4) \rangle \cong C_4$

A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object.

Symmetry group: D_4 Group of rotations: $\langle (1 \ 2 \ 3 \ 4) \rangle \cong C_4$

Subgroup fixing 1: ((2 4))

A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object.

The stabiliser of a point in a group G is the subgroup of G which fixes x.

Symmetry group: D_4 Group of rotations: $\langle (1 \ 2 \ 3 \ 4) \rangle \cong C_4$

Subgroup fixing 1: $\langle (2 4) \rangle$

Simplicity

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

A non-trivial group is called simple if it has no proper non-trivial normal subgroups.

A non-trivial group is called simple if it has no proper non-trivial normal subgroups.

The cyclic groups of prime order are simple.

A non-trivial group is called simple if it has no proper non-trivial normal subgroups.

The cyclic groups of prime order are simple.

The alternating groups of degree at least five are simple.

< A >

3

Shuffles which can be obtained by an even number of transpositions (i.e. two-card swaps).

Shuffles which can be obtained by an even number of transpositions (i.e. two-card swaps).

Alternating group A_{12} .

Alternating Groups: Kissing Spheres

Alternating Groups: Kissing Spheres

Alternating Groups: Kissing Spheres

Twisting group: Alternating group A_{12}

Scott Harper

The Mathieu Groups

21st February 2015 6 / 15

э

A transposition of the contents of space p and space q, written [p, q], is called an elementary move. This is valid if one of p or q is empty.

A transposition of the contents of space p and space q, written [p, q], is called an elementary move. This is valid if one of p or q is empty.

Example 1: [16, 15] cannot be followed by [12, 11].

A transposition of the contents of space p and space q, written [p, q], is called an elementary move. This is valid if one of p or q is empty.

Example 1: [16, 15] cannot be followed by [12, 11].

Example 2: [16, 12] can be followed by [12, 11].

A transposition of the contents of space p and space q, written [p, q], is called an elementary move. This is valid if one of p or q is empty.

Example 1: [16, 15] cannot be followed by [12, 11].

Example 2: [16, 12] can be followed by [12, 11].

Example 3: The 3-cycle $(11 \ 12 \ 15) = [16, 12][12, 11][11, 15][15, 16]$ is valid and fixes the empty space at 16.

Associated group: Alternating group A_{15} A transposition of the contents of space p and space q, written [p, q], is called an elementary move. This is valid if one of p or q is empty.

Example 1: [16, 15] cannot be followed by [12, 11].

Example 2: [16, 12] can be followed by [12, 11].

Example 3: The 3-cycle $(11 \ 12 \ 15) = [16, 12][12, 11][11, 15][15, 16]$ is valid and fixes the empty space at 16.

Transitivity

・ロト ・聞ト ・ヨト ・ヨト

<u> </u>			
50	ott	Har	ne
20		1 1 4 1	

21st February 2015 8 / 15

2

Let G be a group acting on a set X. We say G acts

Let G be a group acting on a set X. We say G acts

transitively if for all x, y ∈ X there exists g ∈ G such that xg = y;

Let G be a group acting on a set X. We say G acts

- transitively if for all x, y ∈ X there exists g ∈ G such that xg = y;
- k-transitively if for all sequences of distinct points
 (x₁,...,x_k), (y₁,...,y_k) ∈ X^k there

exists $g \in G$ such that $x_i g = y_i$;

Let G be a group acting on a set X. We say G acts

- transitively if for all x, y ∈ X there exists g ∈ G such that xg = y;
- k-transitively if for all sequences of distinct points
 (x₁,...,x_k), (y₁,...,y_k) ∈ X^k there exists g ∈ G such that x_ig = y_i;
- sharply *k*-transitively if the above *g* is the unique such element.

Scott Harper

* ロ > * 個 > * 注 > * 注 >

2

Every finite simple group is isomorphic to one of the following groups:

- a cyclic group of prime order;
- an alternating group of degree at least 5;
- a simple group in one of the 16 families of groups of Lie type;
- one of the 26 sporadic simple groups.

Every finite simple group is isomorphic to one of the following groups:

- a cyclic group of prime order;
- an alternating group of degree at least 5;
- a simple group in one of the 16 families of groups of Lie type;
- one of the 26 sporadic simple groups.

Theorem

Let G be a group acting k-transitively on a set. If G is not a symmetric or alternating group then $k \leq 5$.

Every finite simple group is isomorphic to one of the following groups:

- a cyclic group of prime order;
- an alternating group of degree at least 5;
- a simple group in one of the 16 families of groups of Lie type;
- one of the 26 sporadic simple groups.

Theorem

Let G be a group acting k-transitively on a set. If G is not a symmetric or alternating group then $k \leq 5$. Moreover,

- if k = 5 then G is the Mathieu group M_{12} or M_{24} ;
- if k = 4 then G is the Mathieu group M_{11} or M_{23} .

Every finite simple group is isomorphic to one of the following groups:

- a cyclic group of prime order;
- an alternating group of degree at least 5;
- a simple group in one of the 16 families of groups of Lie type;
- one of the 26 sporadic simple groups.

Theorem

Let G be a group acting k-transitively on a set. If G is not a symmetric or alternating group then $k \leq 5$. Moreover,

- if k = 5 then G is the Mathieu group M_{12} or M_{24} ;
- if k = 4 then G is the Mathieu group M_{11} or M_{23} .

Note: M_{22} acts 3-transitively.

The affine plane $AG_2(3)$

- 一司

2

The affine plane $AG_2(3)$

Definition

An S(t, k, v) Steiner system is a set X of v points and a set of k-element subsets of X such that any t points lie in a unique such subset.

The affine plane $AG_2(3)$

Definition

An S(t, k, v) Steiner system is a set X of v points and a set of k-element subsets of X such that any t points lie in a unique such subset.

Example

The affine plane $AG_2(3)$ is an S(2,3,9) Steiner system.

- It is 2-transitive.
- Index 6 subgroup is sharply 2-transitive.

- It is 2-transitive.
- Index 6 subgroup is sharply 2-transitive.
- Uniqueness

э

- It is 2-transitive.
- Index 6 subgroup is sharply 2-transitive.
- Uniqueness
- O Nested structures

- It is 2-transitive.
- Index 6 subgroup is sharply 2-transitive.
- Uniqueness
- O Nested structures
- Original structure

Facts about $AGL_2(3)$:

- It is 2-transitive.
- Index 6 subgroup is sharply 2-transitive.
- Uniqueness
- O Nested structures
- Original structure

Theorem

Suppose that

- G acts transitively on X
- G_x acts (k-1)-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts k-transitively on X.

Facts about $AGL_2(3)$:

- It is 2-transitive.
- Index 6 subgroup is sharply 2-transitive.
- Uniqueness
- O Nested structures
- Original structure

Facts about $P\Gamma L_3(4)$:

- It is 2-transitive.
- *PSL*₃(4) is simple and 2-transitive.

Theorem

Suppose that

- G acts transitively on X
- G_x acts (k-1)-transitively on $X \setminus \{x\}$, for some $x \in X$.
- Then G acts k-transitively on X.

Facts about $AGL_2(3)$:

- It is 2-transitive.
- Index 6 subgroup is sharply 2-transitive.
- Uniqueness
- O Nested structures
- Original structure

Facts about $P\Gamma L_3(4)$:

- It is 2-transitive.
- *PSL*₃(4) is simple and 2-transitive.

Theorem

Suppose that

- G acts transitively on X
- G_x acts (k-1)-transitively on $X \setminus \{x\}$, for some $x \in X$.
- Then G acts k-transitively on X.

Theorem

Suppose that

- G acts k-transitively on X for $k \ge 4$
- G_x is simple, for some $x \in X$.

Then G is simple.

Facts about $AGL_2(3)$:

- It is 2-transitive.
- Index 6 subgroup is sharply 2-transitive.
- Uniqueness
- O Nested structures
- Original structure

Facts about $P\Gamma L_3(4)$:

- It is 2-transitive.
- *PSL*₃(4) is simple and 2-transitive.

Theorem

Suppose that

- G acts transitively on X
- G_x acts (k-1)-transitively on $X \setminus \{x\}$, for some $x \in X$.
- Then G acts k-transitively on X.

Theorem

Suppose that

 G acts k-transitively on X for k ≥ 3 and |X| not equal to 3 or 2ⁿ

< 一型

- G_x is simple, for some $x \in X$.

Then G is simple.

- 一司

3

Shuffles which can be obtained by carrying Mongean shuffles.

Shuffles which can be obtained by carrying Mongean shuffles.

Mathieu group M_{12} .

Mathieu Groups: Kissing Spheres

Twisting group: Alternating group A_{12}

Mathieu Groups: Kissing Spheres

Twisting group: Alternating group A_{12}

Twist-untwist group: Mathieu group M_{12}

Mathieu Groups: A Puzzle

(Image by Bob Harris)

Mathieu Groups: A Puzzle

(Image by Bob Harris)

Elementary moves:

- Move a tile from *p* to the empty space
- Look at the unique line which *p* and empty space define.
- Swap the other two tiles on this line.

Mathieu Groups: A Puzzle

(Image by Bob Harris)

Elementary moves:

- Move a tile from *p* to the empty space
- Look at the unique line which *p* and empty space define.
- Swap the other two tiles on this line.

Associated group: Mathieu Group M_{12}

"These apparently sporadic simple groups would probably repay a closer examination that they have yet received."

(William Burnside)

"These apparently sporadic simple groups would probably repay a closer examination that they have yet received."

(William Burnside)

Any questions?