Throwing Darts at Fractals

Scott Harper (On work with D. Allen, H. Edwards, L. Olsen)

Pure Postgraduate Seminar

13th November 2015

Throwing Darts at Fractals

Scott Harper (On work with D. Allen, H. Edwards, L. Olsen)

Pure Postgraduate Seminar

13th November 2015

Scott Harper

æ

- 一司

What is the average distance A between two points in [0,1]?

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

- 一司

What is the average distance A between two points in [0,1]?

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

 C_0

- 一司

э

What is the average distance A between two points in [0,1]?

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

- 一司

э

What is the average distance A between two points in [0,1]?

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

What is the average distance A between two points in [0,1]?

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

What is the average distance A between two points in [0,1]?

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

What is the average distance A between two points in [0,1]?

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

What is the average distance A between two points in [0,1]?

What is the average distance A between two points in $C := \bigcap_k C_k$?

- 《 白河

What is the average distance A between two points in [0,1]?

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

$$A = \int_{I^2} |x - y| d(x, y) = \cdots$$
 some calculus $\cdots = \frac{1}{3}$

Scott Harper

э

[0,1]

[0,3] imes [0,2]

[0,3] imes [0,2]

Ball of radius r

Ball of radius r

For each $s \ge 0$ and each subset A of the \mathbb{R}^n denote the *s*-dimensional Hausdorff measure of A as by $\mathcal{H}^s(A)$.

[0, 1]

Ball of radius r

For each $s \ge 0$ and each subset A of the \mathbb{R}^n denote the *s*-dimensional Hausdorff measure of A as by $\mathcal{H}^s(A)$.

For each $A\subseteq \mathbb{R}^n$ there is a unique value $d\in [0,\infty]$ such that

- for $s < d \mathcal{H}^s(A) = \infty$;

[0, 1]

- for $s > d \mathcal{H}^s(A) = 0$.

Ball of radius r

For each $s \ge 0$ and each subset A of the \mathbb{R}^n denote the *s*-dimensional Hausdorff measure of A as by $\mathcal{H}^s(A)$.

For each $A\subseteq \mathbb{R}^n$ there is a unique value $d\in [0,\infty]$ such that

- for $s < d \mathcal{H}^s(A) = \infty$;
- for $s > d \mathcal{H}^s(A) = 0$.

[0, 1]

We call d the Hausdorff dimension of A.

Recall: The limiting average distance of C is

$$A_L := \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x-y| d(x,y).$$

Image: Image:

э

Recall: The limiting average distance of C is

$$A_L := \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x-y| d(x,y).$$

Define the Hausdorff average distance of C as

$$A_{\mathcal{H}} \coloneqq rac{1}{\mathcal{H}^{s}(C)^{2}} \int_{C^{2}} |x-y| d(\mathcal{H}^{s} imes \mathcal{H}^{s})(x,y).$$

Scott Harper

Recall: The limiting average distance of C is

$$A_L := \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x-y| d(x,y).$$

Define the Hausdorff average distance of C as

$$A_{\mathcal{H}} := rac{1}{\mathcal{H}^{s}(\mathcal{C})^{2}} \int_{\mathcal{C}^{2}} |x-y| d(\mathcal{H}^{s} imes \mathcal{H}^{s})(x,y).$$

Proposition

For the middle-third Cantor set
$$A_L = A_H = \frac{2}{5}$$
.

Scott Harper

イロト イ団ト イヨト イヨト

æ

For each $k \in \mathbb{N}$ let $L_k = [0, \frac{1}{3}] \cap C_k$ and let $R_k = [\frac{2}{3}, 1] \cap C_k$.

$$\int_{C_{k+1}^2} |x - y| d(x, y) = 2 \int_{L_{k+1}^2} |x - y| d(x, y) + 2 \int_{L_{k+1}R_{k+1}} \int_{R_{k+1}} |x - y| dx dy$$

3

For each $k \in \mathbb{N}$ let $L_k = [0, \frac{1}{3}] \cap C_k$ and let $R_k = [\frac{2}{3}, 1] \cap C_k$.

$$\int_{C_{k+1}^2} |x - y| d(x, y) = 2 \int_{L_{k+1}^2} |x - y| d(x, y) + 2 \int_{L_{k+1}R_{k+1}} \int_{R_{k+1}} |x - y| dx dy$$

Note: $\mathcal{L}(L_k) = \frac{1}{2}\mathcal{L}(C_k)$, $A(L_{k+1}) = \frac{1}{3}A(C_k)$, $\mathcal{L}(L_{k+1}) = \frac{1}{3}\mathcal{L}(C_k)$.

For each $k \in \mathbb{N}$ let $L_k = [0, \frac{1}{3}] \cap C_k$ and let $R_k = [\frac{2}{3}, 1] \cap C_k$.

$$\int_{C_{k+1}^2} |x - y| d(x, y) = 2 \int_{L_{k+1}^2} |x - y| d(x, y) + 2 \int_{L_{k+1}R_{k+1}} \int_{R_{k+1}} |x - y| dx dy$$

Note: $\mathcal{L}(L_k) = \frac{1}{2}\mathcal{L}(C_k)$, $A(L_{k+1}) = \frac{1}{3}A(C_k)$, $\mathcal{L}(L_{k+1}) = \frac{1}{3}\mathcal{L}(C_k)$.

We obtain the recurrence relation

$$A(C_{k+1}) = \frac{1}{6}A(C_k) + \frac{1}{3}.$$

For each $k \in \mathbb{N}$ let $L_k = [0, \frac{1}{3}] \cap C_k$ and let $R_k = [\frac{2}{3}, 1] \cap C_k$.

$$\int_{C_{k+1}^2} |x - y| d(x, y) = 2 \int_{L_{k+1}^2} |x - y| d(x, y) + 2 \int_{L_{k+1}R_{k+1}} \int_{R_{k+1}} |x - y| dx dy$$

Note: $\mathcal{L}(L_k) = \frac{1}{2}\mathcal{L}(C_k)$, $A(L_{k+1}) = \frac{1}{3}A(C_k)$, $\mathcal{L}(L_{k+1}) = \frac{1}{3}\mathcal{L}(C_k)$.

We obtain the recurrence relation

$$A(C_{k+1}) = \frac{1}{6}A(C_k) + \frac{1}{3}.$$

Solving as $k \to \infty$ gives

$$A_L(C) = \frac{1}{1 - \frac{1}{6}} \frac{1}{3} = \frac{2}{5}.$$

Scott Harper

- < A

2

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Now: Let $C_1 = [a_1, a_1 + r_1] \cup \cdots \cup [a_N, a_N + r_N]$ and extend self-similarly.

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Now: Let $C_1 = [a_1, a_1 + r_1] \cup \cdots \cup [a_N, a_N + r_N]$ and extend self-similarly.

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Now: Let $C_1 = [a_1, a_1 + r_1] \cup \cdots \cup [a_N, a_N + r_N]$ and extend self-similarly.

$$\begin{array}{cccc} C_0 & & & & 1 \\ \hline C_1 & & & & 1 \\ a_1 & a_1 + r_1 & a_2 & a_2 + r_2 & & a_3 & & a_3 + r_3 \end{array}$$
:

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Now: Let $C_1 = [a_1, a_1 + r_1] \cup \cdots \cup [a_N, a_N + r_N]$ and extend self-similarly.

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Now: Let $C_1 = [a_1, a_1 + r_1] \cup \cdots \cup [a_N, a_N + r_N]$ and extend self-similarly.

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Now: Let $C_1 = [a_1, a_1 + r_1] \cup \cdots \cup [a_N, a_N + r_N]$ and extend self-similarly.

Before: Choose a section of C_1 according to the probability vector $(\frac{1}{2}, \frac{1}{2})$ and extend self-similarly. (Within the section choose uniformly.)

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Now: Let $C_1 = [a_1, a_1 + r_1] \cup \cdots \cup [a_N, a_N + r_N]$ and extend self-similarly.

Before: Choose a section of C_1 according to the probability vector $(\frac{1}{2}, \frac{1}{2})$ and extend self-similarly. (Within the section choose uniformly.)

Now: Choose a section of C_1 according to the vector $\mathbf{p} = (p_1, p_2, \dots, p_N)$ and extend self-similarly. (Within the section choose uniformly.)

Before: Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and extend self-similarly.

Now: Let $C_1 = [a_1, a_1 + r_1] \cup \cdots \cup [a_N, a_N + r_N]$ and extend self-similarly.

Before: Choose a section of C_1 according to the probability vector $(\frac{1}{2}, \frac{1}{2})$ and extend self-similarly. (Within the section choose uniformly.)

Now: Choose a section of C_1 according to the vector $\mathbf{p} = (p_1, p_2, \dots, p_N)$ for first point then $\mathbf{q} = (q_1, q_2, \dots, q_N)$ for second point and extend self-similarly. (Within the section choose uniformly.)

The corresponding average distance of C_k is

$$A_{\text{geo},k}(\mathbf{p},\mathbf{q}) = \sum_{|\mathbf{i}|=|\mathbf{j}|=k} \frac{\mu(l_{\mathbf{i}})\nu(l_{\mathbf{j}})}{r_{\mathbf{i}}r_{\mathbf{j}}} \int_{l_{\mathbf{i}}\times l_{\mathbf{j}}} |x-y|d(x,y)$$

< m

The corresponding average distance of C_k is

$$A_{\text{geo},k}(\mathbf{p},\mathbf{q}) = \sum_{|\mathbf{i}|=|\mathbf{j}|=k} \frac{\mu(l_{\mathbf{i}})\nu(l_{\mathbf{j}})}{r_{\mathbf{i}}r_{\mathbf{j}}} \int_{l_{\mathbf{i}}\times l_{\mathbf{j}}} |x-y|d(x,y)|$$

Define the geometric average distance of C as

$$A_{\text{geo}}(\mathbf{p},\mathbf{p}) = \lim_{k} A_{\text{geo},k}(\mathbf{p},\mathbf{q}).$$

The corresponding average distance of C_k is

$$A_{\text{geo},k}(\mathbf{p},\mathbf{q}) = \sum_{|\mathbf{i}|=|\mathbf{j}|=k} \frac{\mu(l_{\mathbf{i}})\nu(l_{\mathbf{j}})}{r_{\mathbf{i}}r_{\mathbf{j}}} \int_{l_{\mathbf{i}}\times l_{\mathbf{j}}} |x-y|d(x,y)|$$

Define the geometric average distance of C as

$$A_{\text{geo}}(\mathbf{p},\mathbf{p}) = \lim_{k} A_{\text{geo},k}(\mathbf{p},\mathbf{q}).$$

Define the average distance of C as

$$A(\mu_{\mathbf{p}},\mu_{\mathbf{q}}) = \int_{\mathcal{C}^2} |x-y| d(\mu_{\mathbf{p}} imes \mu_{\mathbf{q}})(x,y).$$

The corresponding average distance of C_k is

$$A_{\text{geo},k}(\mathbf{p},\mathbf{q}) = \sum_{|\mathbf{i}|=|\mathbf{j}|=k} \frac{\mu(l_{\mathbf{i}})\nu(l_{\mathbf{j}})}{r_{\mathbf{i}}r_{\mathbf{j}}} \int_{l_{\mathbf{i}}\times l_{\mathbf{j}}} |x-y|d(x,y)|$$

Define the geometric average distance of C as

$$A_{\text{geo}}(\mathbf{p},\mathbf{p}) = \lim_{k} A_{\text{geo},k}(\mathbf{p},\mathbf{q}).$$

Define the average distance of C as

$$A(\mu_{\mathbf{p}},\mu_{\mathbf{q}}) = \int_{C^2} |x-y| d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x,y).$$

We show that $A_{ ext{geo}}(\mathbf{p},\mathbf{q})=A(\mu_{\mathbf{p}},\mu_{\mathbf{q}}).$

$$A_L = \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x - y| d(x, y),$$

$$A_H = \frac{1}{\mathcal{H}^s(C)^2} \int_{C^2} |x - y| d(\mathcal{H}^s \times \mathcal{H}^s)(x, y).$$

$$A_L = \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x - y| d(x, y),$$

$$A_H = \frac{1}{\mathcal{H}^s(C)^2} \int_{C^2} |x - y| d(\mathcal{H}^s \times \mathcal{H}^s)(x, y).$$

If
$$\mathbf{p} = \mathbf{q} = \left(\frac{r_1}{S}, \frac{r_2}{S}, \dots, \frac{r_N}{S}\right)$$
 where $S = \sum_i r_i$ then $A(\mu_{\mathbf{p}}, \mu_{\mathbf{q}}) = A_L$.

$$A_L = \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x - y| d(x, y),$$

$$A_H = \frac{1}{\mathcal{H}^s(C)^2} \int_{C^2} |x - y| d(\mathcal{H}^s \times \mathcal{H}^s)(x, y).$$

If
$$\mathbf{p} = \mathbf{q} = \left(\frac{r_1}{S}, \frac{r_2}{S}, \dots, \frac{r_N}{S}\right)$$
 where $S = \sum_i r_i$ then $A(\mu_{\mathbf{p}}, \mu_{\mathbf{q}}) = A_L$

Theorem

For an IFS C satisfying the OSC with contraction ratios $r_1, r_2, ..., r_N$ there is a unique real number s such that $\sum_i r_i^s = 1$.

$$A_L = \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x - y| d(x, y),$$

$$A_H = \frac{1}{\mathcal{H}^s(C)^2} \int_{C^2} |x - y| d(\mathcal{H}^s \times \mathcal{H}^s)(x, y).$$

If
$$\mathbf{p} = \mathbf{q} = \left(\frac{r_1}{S}, \frac{r_2}{S}, \dots, \frac{r_N}{S}\right)$$
 where $S = \sum_i r_i$ then $A(\mu_{\mathbf{p}}, \mu_{\mathbf{q}}) = A_L$

Theorem

For an IFS C satisfying the OSC with contraction ratios $r_1, r_2, ..., r_N$ there is a unique real number s such that $\sum_i r_i^s = 1$. Moreover, $s = \dim_H(C)$.

$$A_L = \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x - y| d(x, y),$$

$$A_H = \frac{1}{\mathcal{H}^s(C)^2} \int_{C^2} |x - y| d(\mathcal{H}^s \times \mathcal{H}^s)(x, y).$$

If
$$\mathbf{p} = \mathbf{q} = \left(rac{r_1}{S}, rac{r_2}{S}, \dots, rac{r_N}{S}
ight)$$
 where $S = \sum_i r_i$ then $A(\mu_{\mathbf{p}}, \mu_{\mathbf{q}}) = A_L$

Theorem

For an IFS C satisfying the OSC with contraction ratios $r_1, r_2, ..., r_N$ there is a unique real number s such that $\sum_i r_i^s = 1$. Moreover, $s = \dim_H(C)$.

If
$$\mathbf{p} = \mathbf{q} = (r_1^s, r_2^s, \dots, r_N^s)$$
 where $s = \dim_H(C)$ then

$$A_L = \lim_k \frac{1}{\mathcal{L}(C_k)^2} \int_{C_k^2} |x - y| d(x, y),$$

$$A_H = \frac{1}{\mathcal{H}^s(C)^2} \int_{C^2} |x - y| d(\mathcal{H}^s \times \mathcal{H}^s)(x, y).$$

If
$$\mathbf{p} = \mathbf{q} = \left(\frac{r_1}{S}, \frac{r_2}{S}, \dots, \frac{r_N}{S}\right)$$
 where $S = \sum_i r_i$ then $A(\mu_{\mathbf{p}}, \mu_{\mathbf{q}}) = A_L$.

Theorem

For an IFS C satisfying the OSC with contraction ratios $r_1, r_2, ..., r_N$ there is a unique real number s such that $\sum_i r_i^s = 1$. Moreover, $s = \dim_H(C)$.

If $\mathbf{p} = \mathbf{q} = (r_1^s, r_2^s, \dots, r_N^s)$ where $s = \dim_H(C)$ then $A(\mu_{\mathbf{p}}, \mu_{\mathbf{q}}) = A_H$.

For
$$\pi = (\pi_1, \pi_2, \dots, \pi_N)$$
 write $B_{\pi} = \frac{\sum_i \pi_i a_i}{1 - \sum_i \pi_i r_i}$. Write $s_{i,j}$ for $\operatorname{sign}(i - j)$.

For
$$\pi = (\pi_1, \pi_2, \dots, \pi_N)$$
 write $B_{\pi} = \frac{\sum_i \pi_i a_i}{1 - \sum_i \pi_i r_i}$. Write $s_{i,j}$ for $\operatorname{sign}(i - j)$.

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences $(a_i)_i$ and $(r_i)_i$ and let $\mathbf{p} = (p_1, p_2, \dots, p_N)$ and $\mathbf{q} = (q_1, q_2, \dots, q_N)$ be probability vectors. Then

$$A(\mu_{\mathbf{p}},\mu_{\mathbf{p}}) = \frac{1}{1-\sum_{i} p_{i}q_{i}r_{i}} \left(\sum_{i,j} p_{i}q_{i}|a_{i}-a_{j}| + B_{\mathbf{p}}\sum_{i,j} s_{i,j}p_{i}q_{j}r_{i} + B_{\mathbf{q}}\sum_{i,j} s_{i,j}p_{j}q_{i}r_{i}\right).$$

For
$$\pi = (\pi_1, \pi_2, \dots, \pi_N)$$
 write $B_{\pi} = \frac{\sum_i \pi_i a_i}{1 - \sum_i \pi_i r_i}$. Write $s_{i,j}$ for $\operatorname{sign}(i - j)$.

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences $(a_i)_i$ and $(r_i)_i$ and let $\mathbf{p} = (p_1, p_2, \dots, p_N)$ and $\mathbf{q} = (q_1, q_2, \dots, q_N)$ be probability vectors. Then

$$A(\mu_{\mathbf{p}},\mu_{\mathbf{p}}) = \frac{1}{1-\sum_{i}p_{i}q_{i}r_{i}}\left(\sum_{i,j}p_{i}q_{i}|a_{i}-a_{j}|+B_{\mathbf{p}}\sum_{i,j}s_{i,j}p_{i}q_{j}r_{i}+B_{\mathbf{q}}\sum_{i,j}s_{i,j}p_{j}q_{i}r_{i}\right).$$

Sketch of Proof

For
$$\pi = (\pi_1, \pi_2, \dots, \pi_N)$$
 write $B_{\pi} = \frac{\sum_i \pi_i a_i}{1 - \sum_i \pi_i r_i}$. Write $s_{i,j}$ for $\operatorname{sign}(i - j)$.

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences $(a_i)_i$ and $(r_i)_i$ and let $\mathbf{p} = (p_1, p_2, \dots, p_N)$ and $\mathbf{q} = (q_1, q_2, \dots, q_N)$ be probability vectors. Then

$$A(\mu_{\mathbf{p}},\mu_{\mathbf{p}}) = \frac{1}{1-\sum_{i} p_{i}q_{i}r_{i}} \left(\sum_{i,j} p_{i}q_{i}|a_{i}-a_{j}| + B_{\mathbf{p}}\sum_{i,j} s_{i,j}p_{i}q_{j}r_{i} + B_{\mathbf{q}}\sum_{i,j} s_{i,j}p_{j}q_{i}r_{i}\right).$$

Sketch of Proof

Write $A_k = A_{\text{geo},k}(\mu_{\mathbf{p}}, \mu_{\mathbf{q}}).$

For
$$\pi = (\pi_1, \pi_2, \dots, \pi_N)$$
 write $B_{\pi} = \frac{\sum_i \pi_i a_i}{1 - \sum_i \pi_i r_i}$. Write $s_{i,j}$ for $\operatorname{sign}(i - j)$.

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences $(a_i)_i$ and $(r_i)_i$ and let $\mathbf{p} = (p_1, p_2, \dots, p_N)$ and $\mathbf{q} = (q_1, q_2, \dots, q_N)$ be probability vectors. Then

$$A(\mu_{\mathbf{p}},\mu_{\mathbf{p}}) = \frac{1}{1-\sum_{i} p_{i}q_{i}r_{i}} \left(\sum_{i,j} p_{i}q_{i}|a_{i}-a_{j}| + B_{\mathbf{p}}\sum_{i,j} s_{i,j}p_{i}q_{j}r_{i} + B_{\mathbf{q}}\sum_{i,j} s_{i,j}p_{j}q_{i}r_{i}\right).$$

Sketch of Proof

Write $A_k = A_{\text{geo},k}(\mu_{\mathbf{p}}, \mu_{\mathbf{q}})$. We have $A_{k+1} = (\sum_i p_i q_i r_i) A_k + Y_k$ where

$$Y_k
ightarrow \sum_{i,j} p_i q_i |a_i - a_j| + B_p \sum_{i,j} s_{i,j} p_i q_j r_i + B_q \sum_{i,j} s_{i,j} p_j q_i r_i.$$

Scott Harper

For
$$\pi = (\pi_1, \pi_2, \dots, \pi_N)$$
 write $B_{\pi} = \frac{\sum_i \pi_i a_i}{1 - \sum_i \pi_i r_i}$. Write $s_{i,j}$ for $\operatorname{sign}(i - j)$.

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences $(a_i)_i$ and $(r_i)_i$ and let $\mathbf{p} = (p_1, p_2, \dots, p_N)$ and $\mathbf{q} = (q_1, q_2, \dots, q_N)$ be probability vectors. Then

$$A(\mu_{\mathbf{p}},\mu_{\mathbf{p}}) = \frac{1}{1-\sum_{i}p_{i}q_{i}r_{i}}\left(\sum_{i,j}p_{i}q_{i}|a_{i}-a_{j}|+B_{\mathbf{p}}\sum_{i,j}s_{i,j}p_{i}q_{j}r_{i}+B_{\mathbf{q}}\sum_{i,j}s_{i,j}p_{j}q_{i}r_{i}\right).$$

Sketch of Proof

Write $A_k = A_{\text{geo},k}(\mu_{\mathbf{p}}, \mu_{\mathbf{q}})$. We have $A_{k+1} = (\sum_i p_i q_i r_i) A_k + Y_k$ where

$$Y_k \rightarrow \sum_{i,j} p_i q_i |a_i - a_j| + B_p \sum_{i,j} s_{i,j} p_i q_j r_i + B_q \sum_{i,j} s_{i,j} p_j q_i r_i.$$

The result follows.

Scott Harper

Scott Harper

æ

Corollary (Leary et al.)

$$A_L = \frac{1}{S^2 - \sum_i r_i^3} \left(\sum_{i,j} r_i r_j |a_i - a_j| + 2 \frac{\sum_i r_i a_i}{S - \sum_i r_i^2} \sum_{i,j} s_{i,j} r_i^2 r_j \right) \text{ where } S = \sum_i r_i.$$

Corollary (Leary et al.)

$$A_L = \frac{1}{S^2 - \sum_i r_i^3} \left(\sum_{i,j} r_i r_j |\mathbf{a}_i - \mathbf{a}_j| + 2 \frac{\sum_i r_i a_i}{S - \sum_i r_i^2} \sum_{i,j} s_{i,j} r_i^2 r_j \right) \text{ where } S = \sum_i r_i.$$

Corollary

$$A_{H} = \frac{1}{1 - \sum_{i} r_{i}^{2s+1}} \left(\sum_{i,j} r_{i}^{s} r_{j}^{s} |a_{i} - a_{j}| + 2 \frac{\sum_{i} r_{i}^{s} a_{i}}{S - \sum_{i} r_{i}^{s+1}} \sum_{i,j} s_{i,j} r_{i}^{s+1} r_{j}^{s} \right) \text{ where } s = \dim_{H}(C).$$

Corollary (Leary et al.)

$$A_L = \frac{1}{S^2 - \sum_i r_i^3} \left(\sum_{i,j} r_i r_j |\mathbf{a}_i - \mathbf{a}_j| + 2 \frac{\sum_i r_i a_i}{S - \sum_i r_i^2} \sum_{i,j} s_{i,j} r_i^2 r_j \right) \text{ where } S = \sum_i r_i.$$

Corollary

$$A_{H} = \frac{1}{1 - \sum_{i} r_{i}^{2s+1}} \left(\sum_{i,j} r_{i}^{s} r_{j}^{s} |a_{i} - a_{j}| + 2 \frac{\sum_{i} r_{i}^{s} a_{i}}{S - \sum_{i} r_{i}^{s+1}} \sum_{i,j} s_{i,j} r_{i}^{s+1} r_{j}^{s} \right) \text{ where } s = \dim_{H}(C).$$

Example

Consider *C* where
$$N = 2$$
, $a_1 = 0$, $a_2 = \frac{1}{2}$, $r_1 = \frac{1}{4}$ and $r_2 = \frac{1}{2}$. Then $A_L = 8/21 \simeq 0.381$ and $A_H = \frac{12}{5(4+\sqrt{5})} \simeq 0.385$.

э

Scott Harper

∃ ► < ∃ ►</p>

Image: A matrix

The *n*th moment is

$$M_n := \int_{C^2} |x-y|^n d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x,y).$$

I ≡ ►

Image: A matrix

The *n*th moment is

$$M_n := \int_{C^2} |x - y|^n d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x, y).$$

New setting: N = 2, $r_1 = r_2 = r$ and $\mathbf{p} = \mathbf{q} = (p_1, p_2)$.

< A

The *n*th moment is

$$M_n \coloneqq \int_{C^2} |x-y|^n d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x,y).$$

New setting: N = 2, $r_1 = r_2 = r$ and $\mathbf{p} = \mathbf{q} = (p_1, p_2)$. Write $p = p_1^2 + p_2^2$, $q = p_1 p_2$ and $\Delta = \frac{\log p}{\log r}$.

The *n*th moment is

$$M_n := \int_{C^2} |x-y|^n d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x,y).$$

New setting: N = 2, $r_1 = r_2 = r$ and $\mathbf{p} = \mathbf{q} = (p_1, p_2)$. Write $p = p_1^2 + p_2^2$, $q = p_1 p_2$ and $\Delta = \frac{\log p}{\log r}$.

Theorem (Allen, Edwards, H., Olsen)

The *n*th moment is

$$M_n \coloneqq \int_{\mathcal{C}^2} |x-y|^n d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x,y).$$

New setting: N = 2, $r_1 = r_2 = r$ and $\mathbf{p} = \mathbf{q} = (p_1, p_2)$. Write $p = p_1^2 + p_2^2$, $q = p_1 p_2$ and $\Delta = \frac{\log p}{\log r}$.

Theorem (Allen, Edwards, H., Olsen)

Limit: $M_n \to 0$ as $n \to \infty$.

The *n*th moment is

$$M_n := \int_{\mathcal{C}^2} |x-y|^n d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x,y).$$

New setting: N = 2, $r_1 = r_2 = r$ and $\mathbf{p} = \mathbf{q} = (p_1, p_2)$. Write $p = p_1^2 + p_2^2$, $q = p_1 p_2$ and $\Delta = \frac{\log p}{\log r}$.

Theorem (Allen, Edwards, H., Olsen)

Limit: $M_n \to 0$ as $n \to \infty$. *Rate of Decay:* $\frac{\log M_n}{\log n} \to -\Delta$. (Informally: M_n behaves like $\frac{1}{n^{\Delta}}$.)

The *n*th moment is

$$M_n \coloneqq \int_{\mathcal{C}^2} |x-y|^n d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x,y).$$

New setting:
$$N = 2$$
, $r_1 = r_2 = r$ and $\mathbf{p} = \mathbf{q} = (p_1, p_2)$.
Write $p = p_1^2 + p_2^2$, $q = p_1 p_2$ and $\Delta = \frac{\log p}{\log r}$.

Theorem (Allen, Edwards, H., Olsen)

Limit:
$$M_n \to 0$$
 as $n \to \infty$.
Rate of Decay: $\frac{\log M_n}{\log n} \to -\Delta$. (Informally: M_n behaves like $\frac{1}{n^{\Delta}}$.)
Nature of Decay: $n^{\Delta}M_n = \Pi(n) + \varepsilon_n$ for a periodic function
 $\Pi : (0, \infty) \to \mathbb{C}$ and sequence $(\varepsilon_n)_n$ such that $\varepsilon_n \to 0$.

12 / 17

The *n*th moment is

$$M_n \coloneqq \int_{\mathcal{C}^2} |x-y|^n d(\mu_{\mathbf{p}} \times \mu_{\mathbf{q}})(x,y).$$

New setting:
$$N = 2$$
, $r_1 = r_2 = r$ and $\mathbf{p} = \mathbf{q} = (p_1, p_2)$.
Write $p = p_1^2 + p_2^2$, $q = p_1 p_2$ and $\Delta = \frac{\log p}{\log r}$.

Theorem (Allen, Edwards, H., Olsen)

Limit: $M_n \to 0$ as $n \to \infty$. *Rate of Decay:* $\frac{\log M_n}{\log n} \to -\Delta$. (Informally: M_n behaves like $\frac{1}{n^{\Delta}}$.) *Nature of Decay:* $n^{\Delta}M_n = \Pi(n) + \varepsilon_n$ for a periodic function $\Pi : (0, \infty) \to \mathbb{C}$ and sequence $(\varepsilon_n)_n$ such that $\varepsilon_n \to 0$.

Expression for periodic function: $\Pi(u) = \frac{1}{-\log r} \sum_{n \in \mathbb{Z}} Z(s_n) e^{2\pi i \frac{\log u}{\log r}}.$

12 /

Proof Strategy

C + +		
SCOTT	Har	nei
00000		pe:

Image: A matrix

Proof Strategy

We want to show that for some periodic function Π and a sequence $(\varepsilon_n)_n$ such that $\varepsilon_n \to 0$ we have

$$n^{\Delta}M_n = \Pi(n) + \varepsilon_n \iff M_n = n^{-\Delta}\Pi(n) + n^{-\Delta}\varepsilon_n.$$
Proof Strategy

We want to show that for some periodic function Π and a sequence $(\varepsilon_n)_n$ such that $\varepsilon_n \to 0$ we have

$$n^{\Delta}M_n = \Pi(n) + \varepsilon_n \iff M_n = n^{-\Delta}\Pi(n) + n^{-\Delta}\varepsilon_n.$$

We will show that for some constant $C \in \mathbb{R}$

$$|M_n - n^{-\Delta}\Pi(n)| \leq n^{-\Delta}\frac{C}{n}.$$

Proof Strategy

We want to show that for some periodic function Π and a sequence $(\varepsilon_n)_n$ such that $\varepsilon_n \to 0$ we have

$$n^{\Delta}M_n = \Pi(n) + \varepsilon_n \iff M_n = n^{-\Delta}\Pi(n) + n^{-\Delta}\varepsilon_n.$$

We will show that for some constant $C \in \mathbb{R}$

$$|M_n - n^{-\Delta}\Pi(n)| \le n^{-\Delta}\frac{C}{n}.$$

We have

$$\left|M_n-n^{-\Delta}\Pi(n)\right|\leq \left|M_n-L(n)\right|+\left|L(n)-n^{-\Delta}\Pi(n)\right|.$$

where $L: \mathbb{C} \to \mathbb{C}$ is defined as

$$L(s) = \sum_{k} \frac{M_k}{k!} s^k e^{-s}.$$

Step 1: Linear Cone Bound

Recall $L(s) = \sum_k \frac{M_k}{k!} s^k e^{-s}$.

Recall $L(s) = \sum_k \frac{M_k}{k!} s^k e^{-s}$.

For $\theta < \frac{\pi}{2}$ define the linear cone as $S_{\theta} = \{s \mid |arg(s)| \le \theta\}$.

Recall $L(s) = \sum_k \frac{M_k}{k!} s^k e^{-s}$.

For $\theta < \frac{\pi}{2}$ define the linear cone as $S_{\theta} = \{s \mid |arg(s)| \le \theta\}$.

Theorem (Jacquet-Szpankowksi)

Let $(t_n)_n$ be a sequence of bounded positive numbers and define $f : \mathbb{C} \to \mathbb{C}$ by $f(s) = \sum_n \frac{t_n}{n!} s^n e^{-s}$.

Suppose that there exist $\theta < \frac{\pi}{2}$ and R > 0 such that for |s| > R• $s \in S_{\theta} \implies |f(s)| \le A_{|s|^{D}}^{1}$ for some A, D > 0; • $s \notin S_{\theta} \implies |f(s)e^{s}| \le Be^{\delta|s|}$ for some $B, 0 < \delta < 1$.

Then there is a constant C such that $|t_n - f(n)| \leq C \frac{1}{n^{D+1}}$ for all $n \in \mathbb{N}$.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Recall $L(s) = \sum_k \frac{M_k}{k!} s^k e^{-s}$.

For $\theta < \frac{\pi}{2}$ define the linear cone as $S_{\theta} = \{s \mid |arg(s)| \le \theta\}$.

Theorem (Jacquet-Szpankowksi)

Let $(t_n)_n$ be a sequence of bounded positive numbers and define $f : \mathbb{C} \to \mathbb{C}$ by $f(s) = \sum_n \frac{t_n}{n!} s^n e^{-s}$.

Suppose that there exist $\theta < \frac{\pi}{2}$ and R > 0 such that for |s| > R **1** $s \in S_{\theta} \implies |f(s)| \le A \frac{1}{|s|^{D}}$ for some A, D > 0; **2** $s \notin S_{\theta} \implies |f(s)e^{s}| \le Be^{\delta|s|}$ for some $B, 0 < \delta < 1$.

Then there is a constant C such that $|t_n - f(n)| \leq C \frac{1}{n^{D+1}}$ for all $n \in \mathbb{N}$.

There is a constant C such that $|M_n - L(n)| \le C_1 \frac{1}{n^{\Delta+1}} = n^{-\Delta} \frac{C_1}{n}$.

14 / 17

Scott Harper

Step 2: Mellin Transform

Define $\Lambda : \mathbb{C} \to \mathbb{C}$ as $\Lambda(s) = pL(rs)e^{-(1-r)s} + qL(-rs)e^{-2rs}$.

Define
$$\Lambda : \mathbb{C} \to \mathbb{C}$$
 as $\Lambda(s) = pL(rs)e^{-(1-r)s} + qL(-rs)e^{-2rs}$.

Let $a, b \in [-\infty, \infty]$ with a < b and let $f : (0, \infty) \to \mathbb{R}$ be piecewise continuous on all compact subintervals of $(0, \infty)$ with $f(x_0) = \frac{\lim_{x \to x_0} f(x) + \lim_{x \to x_0} f(x)}{2}$ at all discontinuity points x_0 of f.

The Mellin transform of f Mf : $\{s \in \mathbb{C} \mid a < \operatorname{Re}(s) < b\} \rightarrow \mathbb{C}$ is defined as

$$\mathsf{M}f(s) = \int_0^\infty x^{s-1}f(x)dx,$$

provided that the integral is well-defined.

Define
$$\Lambda : \mathbb{C} \to \mathbb{C}$$
 as $\Lambda(s) = pL(rs)e^{-(1-r)s} + qL(-rs)e^{-2rs}$.

Let $a, b \in [-\infty, \infty]$ with a < b and let $f : (0, \infty) \to \mathbb{R}$ be "nice". The Mellin transform of $f Mf : \{s \in \mathbb{C} \mid a < \operatorname{Re}(s) < b\} \to \mathbb{C}$ is defined as $Mf = \int_0^\infty x^{s-1} f(x) dx$, provided that the integral is well-defined.

Define $\Lambda : \mathbb{C} \to \mathbb{C}$ as $\Lambda(s) = pL(rs)e^{-(1-r)s} + qL(-rs)e^{-2rs}$.

Definition (The Mellin Transform)

Let $a, b \in [-\infty, \infty]$ with a < b and let $f : (0, \infty) \to \mathbb{R}$ be "nice". The Mellin transform of $f \, Mf : \{s \in \mathbb{C} \mid a < \operatorname{Re}(s) < b\} \to \mathbb{C}$ is defined as $Mf = \int_0^\infty x^{s-1} f(x) dx$, provided that the integral is well-defined.

Define $Z : \{s \in \mathbb{C} \mid \operatorname{Re}(s) > 0\} \to \mathbb{C}$ as $Z = M\Lambda$.

Define
$$\Lambda : \mathbb{C} \to \mathbb{C}$$
 as $\Lambda(s) = pL(rs)e^{-(1-r)s} + qL(-rs)e^{-2rs}$.

Let $a, b \in [-\infty, \infty]$ with a < b and let $f : (0, \infty) \to \mathbb{R}$ be "nice". The Mellin transform of $f Mf : \{s \in \mathbb{C} \mid a < \operatorname{Re}(s) < b\} \to \mathbb{C}$ is defined as $Mf = \int_0^\infty x^{s-1} f(x) dx$, provided that the integral is well-defined.

Define $Z : \{s \in \mathbb{C} \mid \operatorname{Re}(s) > 0\} \to \mathbb{C}$ as $Z = \mathsf{M}\Lambda$. So $(\mathsf{M}L)(s) = \frac{Z(s)}{1-qr^{-s}}$.

Define
$$\Lambda : \mathbb{C} \to \mathbb{C}$$
 as $\Lambda(s) = pL(rs)e^{-(1-r)s} + qL(-rs)e^{-2rs}$.

Let $a, b \in [-\infty, \infty]$ with a < b and let $f : (0, \infty) \to \mathbb{R}$ be "nice". The Mellin transform of $f Mf : \{s \in \mathbb{C} \mid a < \operatorname{Re}(s) < b\} \to \mathbb{C}$ is defined as $Mf = \int_0^\infty x^{s-1} f(x) dx$, provided that the integral is well-defined.

$$\mathsf{Define}\,\,Z:\{s\in\mathbb{C}\,\,\mid\,\,\mathrm{Re}(s)>0\}\to\mathbb{C}\,\,\mathsf{as}\,\,Z=\mathsf{M}\Lambda.\,\,\mathsf{So}\,\,(\mathsf{M}L)(s)=\tfrac{Z(s)}{1-qr^{-s}}.$$

Theorem (The Mellin Inversion Theorem)

Consider the same setting as above. For a < c < b and x > 0 we have

$$f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} (Mf)(s) ds.$$

Define
$$\Lambda : \mathbb{C} \to \mathbb{C}$$
 as $\Lambda(s) = pL(rs)e^{-(1-r)s} + qL(-rs)e^{-2rs}$.

Let $a, b \in [-\infty, \infty]$ with a < b and let $f : (0, \infty) \to \mathbb{R}$ be "nice". The Mellin transform of $f Mf : \{s \in \mathbb{C} \mid a < \operatorname{Re}(s) < b\} \to \mathbb{C}$ is defined as $Mf = \int_0^\infty x^{s-1} f(x) dx$, provided that the integral is well-defined.

$$\mathsf{Define}\,\,Z:\{s\in\mathbb{C}\,\,\mid\,\,\mathrm{Re}(s)>0\}\to\mathbb{C}\,\,\mathsf{as}\,\,Z=\mathsf{M}\Lambda.\,\,\mathsf{So}\,\,(\mathsf{M}L)(s)=\tfrac{Z(s)}{1-qr^{-s}}.$$

Theorem (The Mellin Inversion Theorem)

Consider the same setting as above. For a < c < b and x > 0 we have

$$f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} (Mf)(s) ds.$$

So we have $L(u) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} u^{-s} \frac{Z(s)}{1-qr^{-s}} ds$.

Scott Harper

(Recall: bounding $|L(n) - n^{-\Delta}\Pi(n)|$)

Let $\varepsilon > 0$. Choose $N \ge \ldots$

Let $\varepsilon > 0$. Choose $N \ge ...$ $|L(u) - u^{-\Delta} \Pi(u)| = \left| \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} f(s) ds - \sum_{n \in \mathbb{Z}} r(s_n) \right|$ Let $\varepsilon > 0$. Choose $N \ge ...$ $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$

Let
$$\varepsilon > 0$$
. Choose $N \ge ...$
 $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$
 $\leq \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - \int_{c-ia_N}^{c+ia_N} f(s) ds \right| + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$

Let
$$\varepsilon > 0$$
. Choose $N \ge N_1$
 $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$
 $\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$

Let
$$\varepsilon > 0$$
. Choose $N \ge N_1$

$$2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$$

$$\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$$

$$\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|n| \le N} r(s_n) \right| + 2\pi i \left| \sum_{|n| \le N} r(s_n) - \sum_{n \in \mathbb{Z}} r(s_n) \right|$$

Let
$$\varepsilon > 0$$
. Choose $N \ge N_1, N_2$

$$2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$$

$$\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$$

$$\le \frac{\varepsilon}{4} + \left| \int_{c-N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|n| \le N} r(s_n) \right| + \frac{\varepsilon}{4}$$

(Recall: bounding
$$|L(n) - n^{-\Delta}\Pi(n)|$$
)

Let
$$\varepsilon > 0$$
. Choose $N \ge N_1, N_2$
 $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$
 $\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$
 $\le \frac{\varepsilon}{4} + \left| \int_{c-N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|n| \le N} r(s_n) \right| + \frac{\varepsilon}{4}$
 $= \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - \int_{\Gamma_N} f(s) ds \right| + \frac{\varepsilon}{4}$

э

Let
$$\varepsilon > 0$$
. Choose $N \ge N_1, N_2$

$$2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$$

$$\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$$

$$\le \frac{\varepsilon}{4} + \left| \int_{c-N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|n| \le N} r(s_n) \right| + \frac{\varepsilon}{4}$$

$$= \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - \int_{\Gamma_N} f(s) ds \right| + \frac{\varepsilon}{4}$$

$$= \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{d+ia_N} f(s) ds + \int_{d-ia_N}^{d-ia_N} f(s) ds \right| + \frac{\varepsilon}{4}$$

Let ε

Let
$$\varepsilon > 0$$
. Choose $N \ge N_1, N_2$
 $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$
 $\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$
 $\le \frac{\varepsilon}{4} + \left| \int_{c-N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|n| \le N} r(s_n) \right| + \frac{\varepsilon}{4}$
 $= \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - \int_{\Gamma_N} f(s) ds \right| + \frac{\varepsilon}{4}$
 $\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{d+ia_N} f(s) ds \right| + \left| \int_{d-ia_N}^{d-ia_N} f(s) ds \right| + \left| \int_{d-ia_N}^{c-ia_N} f(s) ds \right| + \frac{\varepsilon}{4}$

Let
$$\varepsilon > 0$$
. Choose $N \ge N_1, N_2, N_3$
 $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$
 $\le \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$
 $\le \frac{\varepsilon}{4} + \left| \int_{c-N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|n| \le N} r(s_n) \right| + \frac{\varepsilon}{4}$
 $= \frac{\varepsilon}{4} + \left| \int_{c-ia_N}^{c+ia_N} f(s) ds - \int_{\Gamma_N} f(s) ds \right| + \frac{\varepsilon}{4}$
 $\le \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \left| \int_{d-ia_N}^{d-ia_N} f(s) ds \right| + \frac{\varepsilon}{4} + \frac{\varepsilon}{4}$

(Recall: bounding $|L(n) - n^{-\Delta}\Pi(n)|$)

Let $\varepsilon > 0$. Choose $N > N_1, N_2, N_3, N_4$. $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$ $\leq \frac{\varepsilon}{4} + \left| \int_{c-i\infty}^{c+ia_N} f(s) ds - 2\pi i \sum r(s_n) \right|$ $\leq \frac{\varepsilon}{4} + \left| \int_{c-N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|n| \leq N} r(s_n) \right| + \frac{\varepsilon}{4}$ $=\frac{\varepsilon}{4}+\left|\int_{-\infty}^{c+ia_N}f(s)ds-\int_{-\infty}f(s)ds\right|+\frac{\varepsilon}{4}$ $\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \left| \int_{s}^{d-ia_N} f(s) ds \right| + \frac{\varepsilon}{4} + \frac{\varepsilon}{4}$ $\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{K_d}{d} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4}$

(Recall: bounding $|L(n) - n^{-\Delta}\Pi(n)|$)

Let $\varepsilon > 0$. Choose $N > N_1, N_2, N_3, N_4$. $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{c-i\infty}^{c+i\infty} f(s) ds - 2\pi i \sum_{n \in \mathbb{Z}} r(s_n) \right|$ $\leq \frac{\varepsilon}{4} + \left| \int_{c-i\infty}^{c+ia_N} f(s) ds - 2\pi i \sum r(s_n) \right|$ $\leq \frac{\varepsilon}{4} + \left| \int_{c-N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|n| \leq N} r(s_n) \right| + \frac{\varepsilon}{4}$ $=\frac{\varepsilon}{4}+\left|\int_{-\infty}^{c+ia_N}f(s)ds-\int_{-\infty}f(s)ds\right|+\frac{\varepsilon}{4}$ $\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \left| \int_{u}^{d-ia_N} f(s) ds \right| + \frac{\varepsilon}{4} + \frac{\varepsilon}{4}$ $\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{K_d}{d} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{K_d}{d} + \varepsilon$

(Recall: bounding $|L(n) - n^{-\Delta}\Pi(n)|$)

Let $\varepsilon > 0$. Choose $N > N_1, N_2, N_3, N_4$. $2\pi |L(u) - u^{-\Delta} \Pi(u)| = \left| \int_{s-i\infty}^{s+i\infty} f(s) ds - 2\pi i \sum_{s=0}^{\infty} r(s_n) \right|$ $\leq \frac{\varepsilon}{4} + \left| \int_{c-i\infty}^{c+ia_N} f(s) ds - 2\pi i \sum r(s_n) \right|$ $\leq \frac{\varepsilon}{4} + \left| \int_{c-N}^{c+ia_N} f(s) ds - 2\pi i \sum_{|s| \leq N} r(s_n) \right| + \frac{\varepsilon}{4}$ $=\frac{\varepsilon}{4}+\left|\int_{-\infty}^{c+ia_{N}}f(s)ds-\int_{-\infty}f(s)ds\right|+\frac{\varepsilon}{4}$ $\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \left| \int_{u}^{d-ia_N} f(s) ds \right| + \frac{\varepsilon}{4} + \frac{\varepsilon}{4}$ $\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{K_d}{M} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{K_d}{M} + \varepsilon$

Choosing $d = \Delta + 1$ gives $|L(n) - n^{-\Delta} \Pi(n)| \le \frac{\kappa_{\Delta+1}/2\pi}{n^{\Delta+1}} = n^{-\Delta} \frac{C_2}{n}$.

Summary

э.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

We have shown that

$$\left|M_n - n^{-\Delta}\Pi(n)\right| \leq |M_n - L(n)| + \left|L(n) - n^{-\Delta}\Pi(n)\right|$$

< □ > < ---->

æ

We have shown that

$$\begin{split} \left| M_n - n^{-\Delta} \Pi(n) \right| &\leq |M_n - L(n)| + \left| L(n) - n^{-\Delta} \Pi(n) \right| \\ &\leq n^{-\Delta} \frac{C_1}{n} + n^{-\Delta} \frac{C_2}{n} \\ &\leq n^{-\Delta} \frac{C}{n} \end{split}$$

< □ > < ---->

æ

We have shown that

$$\begin{split} \left| M_n - n^{-\Delta} \Pi(n) \right| &\leq |M_n - L(n)| + \left| L(n) - n^{-\Delta} \Pi(n) \right| \\ &\leq n^{-\Delta} \frac{C_1}{n} + n^{-\Delta} \frac{C_2}{n} \\ &\leq n^{-\Delta} \frac{C}{n} \end{split}$$

Questions?

SCOTT HORD	
	er.

2