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Motivating Examples

What is the average distance A between two points in [0,1]?

A =

∫
I 2

|x − y |d(x , y) = · · · some calculus · · · =
1

3

C0

C1

C2

C3

...⋂
k Ck

...

A(C0) = 1
L(C2

0 )

∫
C2

0
|x − y |d(x , y)

A(C1) = 1
L(C2

1 )

∫
C2

1
|x − y |d(x , y)

A(C2) = 1
L(C2

2 )

∫
C2

2
|x − y |d(x , y)

A(C3) = 1
L(C2

3 )

∫
C2

3
|x − y |d(x , y)

...
AL := limk A(Ck)

What is the average distance A between two points in C :=
⋂

k Ck?
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Hausdorff Measure and Dimension

[0, 1] [0, 3]× [0, 2]

Ball of radius r

For each s ≥ 0 and each subset A of the Rn denote the s-dimensional
Hausdorff measure of A as by Hs(A).

For each A ⊆ Rn there is a unique value d ∈ [0,∞] such that

- for s < d Hs(A) =∞;

- for s > d Hs(A) = 0.

We call d the Hausdorff dimension of A.
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Average Distance

Recall: The limiting average distance of C is

AL := lim
k

1

L(Ck)2

∫
C2
k

|x − y |d(x , y).

Define the Hausdorff average distance of C as

AH :=
1

Hs(C )2

∫
C2

|x − y |d(Hs ×Hs)(x , y).

Proposition

For the middle-third Cantor set AL = AH = 2
5 .
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Sketch of Proof

For each k ∈ N let Lk = [0, 1
3 ] ∩ Ck and let Rk = [ 2

3 , 1] ∩ Ck .∫
C2
k+1

|x − y |d(x , y) = 2

∫
L2
k+1

|x − y |d(x , y) + 2

∫
Lk+1

∫
Rk+1

|x − y |dxdy

Note: L(Lk) = 1
2L(Ck), A(Lk+1) = 1

3A(Ck), L(Lk+1) = 1
3L(Ck).

We obtain the recurrence relation

A(Ck+1) =
1

6
A(Ck) +

1

3
.

Solving as k →∞ gives

AL(C ) =
1

1− 1
6

1

3
=

2

5
.

�
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More General Setting

Before: Let C1 = [0, 1
3 ] ∪ [ 2

3 , 1] and extend self-similarly.

Now: Let C1 = [a1, a1 + r1] ∪ · · · ∪ [aN , aN + rN ] and extend self-similarly.

C0

C1

C2

...⋂
k Ck

...

0 1

a1 a1 + r1 a2 a2 + r2 a3 a3 + r3

Before: Choose a section of C1 according to the probability vector ( 1
2 ,

1
2 )

and extend self-similarly. (Within the section choose uniformly.)
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Now: Choose a section of C1 according to the vector p = (p1, p2, . . . , pN)
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self-similarly. (Within the section choose uniformly.)
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Average Distance

The corresponding average distance of Ck is

Ageo,k(p,q) =
∑
|i|=|j|=k

µ(Ii)ν(Ij)

rirj

∫
Ii×Ij
|x − y |d(x , y)

Define the geometric average distance of C as

Ageo(p,p) = lim
k

Ageo,k(p,q).

Define the average distance of C as

A(µp, µq) =

∫
C2

|x − y |d(µp × µq)(x , y).

We show that Ageo(p,q) = A(µp, µq).
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Particular Average Distances

Recall the average distances

AL = lim
k

1

L(Ck)2

∫
C2
k

|x − y |d(x , y),

AH =
1

Hs(C )2

∫
C2

|x − y |d(Hs ×Hs)(x , y).

If p = q =
(
r1
S ,

r2
S , . . . ,

rN
S

)
where S =

∑
i ri then A(µp, µq) = AL.

Theorem

For an IFS C satisfying the OSC with contraction ratios r1, r2, . . . , rN there
is a unique real number s such that

∑
i r

s
i = 1.

Moreover, s = dimH(C ).

If p = q = (r s1 , r
s
2 , . . . , r

s
N) where s = dimH(C ) then A(µp, µq) = AH .
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The Average Distance Theorem

For π = (π1, π2, . . . , πN) write Bπ =
∑

i πiai
1−

∑
i πi ri

. Write si ,j for sign(i − j).

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences (ai )i and (ri )i and let
p = (p1, p2, . . . , pN) and q = (q1, q2, . . . , qN) be probability vectors. Then

A(µp, µp) =
1

1−
∑

i piqi ri

(∑
i,j

piqi |ai − aj |+ Bp

∑
i,j

si,jpiqj ri + Bq

∑
i,j

si,jpjqi ri

)
.

Sketch of Proof

Write Ak = Ageo,k(µp, µq). We have Ak+1 = (
∑

i piqi ri )Ak + Yk where

Yk →
∑
i,j

piqi |ai − aj |+ Bp

∑
i,j

si,jpiqj ri + Bq

∑
i,j

si,jpjqi ri .

The result follows. �
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Particular Average Distances

Corollary (Leary et al.)

AL = 1
S2−

∑
i r

3
i

(∑
i,j ri rj |ai − aj |+ 2

∑
i riai

S−
∑

i r
2
i

∑
i,j si,j r

2
i rj
)

where S =
∑

i ri .

Corollary

AH = 1
1−

∑
i r

2s+1
i

(∑
i,j r

s
i r

s
j |ai − aj |+ 2

∑
i r

s
i ai

S−
∑

i r
s+1
i

∑
i,j si,j r

s+1
i r sj

)
where s = dimH(C).

Example

Consider C where N = 2, a1 = 0, a2 = 1
2 , r1 = 1

4 and r2 = 1
2 . Then

AL = 8/21 ' 0.381 and AH = 12
5(4+

√
5)
' 0.385.
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Higher Moments

The nth moment is

Mn :=

∫
C2

|x − y |nd(µp × µq)(x , y).

New setting: N = 2, r1 = r2 = r and p = q = (p1, p2).

Write p = p2
1 + p2

2 , q = p1p2 and ∆ = log p
log r .

Theorem (Allen, Edwards, H., Olsen)

Limit: Mn → 0 as n→∞.

Rate of Decay: log Mn

log n → −∆. (Informally: Mn behaves like 1
n∆ .)

Nature of Decay: n∆Mn = Π(n) + εn for a periodic function
Π : (0,∞)→ C and sequence (εn)n such that εn → 0.

Expression for periodic function: Π(u) = 1
− log r

∑
n∈Z

Z (sn)e2πi log u
log r .
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Proof Strategy

We want to show that for some periodic function Π and a sequence (εn)n
such that εn → 0 we have

n∆Mn = Π(n) + εn ⇐⇒ Mn = n−∆Π(n) + n−∆εn.

We will show that for some constant C ∈ R

|Mn − n−∆Π(n)| ≤ n−∆C

n
.

We have ∣∣∣Mn − n−∆Π(n)
∣∣∣ ≤ |Mn − L(n)|+

∣∣∣L(n)− n−∆Π(n)
∣∣∣ .

where L : C→ C is defined as

L(s) =
∑
k

Mk

k!
ske−s .
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Step 1: Linear Cone Bound (Recall: bounding |Mn − L(n)|)

Recall L(s) =
∑

k
Mk
k! s

ke−s .

For θ < π
2 define the linear cone as Sθ = {s | |arg(s)| ≤ θ}.

Theorem (Jacquet-Szpankowksi)

Let (tn)n be a sequence of bounded positive numbers and define
f : C→ C by f (s) =

∑
n

tn
n!s

ne−s .

Suppose that there exist θ < π
2 and R > 0 such that for |s| > R

1 s ∈ Sθ =⇒ |f (s)| ≤ A 1
|s|D for some A,D > 0;

2 s 6∈ Sθ =⇒ |f (s)es | ≤ Beδ|s| for some B, 0 < δ < 1.

Then there is a constant C such that |tn − f (n)| ≤ C 1
nD+1 for all n ∈ N.

There is a constant C such that |Mn − L(n)| ≤ C1
1

n∆+1 = n−∆ C1
n .
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Step 2: Mellin Transform (Recall: bounding
∣∣L(n)− n−∆Π(n)

∣∣)

Define Λ : C→ C as Λ(s) = pL(rs)e−(1−r)s + qL(−rs)e−2rs .

Define Z : {s ∈ C | Re(s) > 0} → C as Z = MΛ. So (ML)(s) = Z(s)
1−qr−s .

Theorem (The Mellin Inversion Theorem)

Consider the same setting as above. For a < c < b and x > 0 we have

f (x) =
1

2πi

∫ c+i∞

c−i∞
x−s(Mf )(s)ds.

So we have L(u) = 1
2πi

∫ c+i∞
c−i∞ u−s Z(s)

1−qr−s ds.
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Step 3: Residue Theorem (Recall: bounding
∣∣L(n)− n−∆Π(n)

∣∣)

Let ε > 0. Choose N ≥

2π|L(u)− u−∆Π(u)| =

∣∣∣∣∣
∫ c+i∞

c−i∞
f (s)ds − 2πi

∑
n∈Z

r(sn)

∣∣∣∣∣
≤ ε

4
+

∣∣∣∣∣
∫ c+iaN

c−iaN

f (s)ds − 2πi
∑
n∈Z

r(sn)

∣∣∣∣∣
≤ ε

4
+

∣∣∣∣∣∣
∫ c+iaN

c−N

f (s)ds − 2πi
∑
|n|≤N

r(sn)

∣∣∣∣∣∣+
ε

4

=
ε

4
+

∣∣∣∣∫ c+iaN

c−iaN

f (s)ds −
∫

ΓN

f (s)ds

∣∣∣∣+
ε

4

≤ ε

4
+
ε

4
+

∣∣∣∣∫ d−iaN

d+iaN

f (s)ds

∣∣∣∣+
ε

4
+
ε

4

≤ ε

4
+
ε

4
+

Kd

ud
+
ε

4
+
ε

4
=

Kd

ud
+ ε

Choosing d = ∆ + 1 gives |L(n)− n−∆Π(n)| ≤ K∆+1/2π

n∆+1 = n−∆ C2
n

.
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Summary

We have shown that∣∣∣Mn − n−∆Π(n)
∣∣∣ ≤ |Mn − L(n)|+

∣∣∣L(n)− n−∆Π(n)
∣∣∣

≤ n−∆C1

n
+ n−∆C2

n

≤ n−∆C

n
�
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