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What is the average distance A between two points in [0,1]?
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Motivating Examples

What is the average distance A between two points in [0,1]?

1
A—/ |x — yld(x,y) = - - -some caIcqus---:g
12
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Motivating Examples

What is the average distance A between two points in [0,1]?
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-some calculus--- = 3
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G
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A(Go) = w5 ez Ix = ¥ld(x,)
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Motivating Examples

What is the average distance A between two points in [0,1]?

1
A—/ |x — yld(x,y) = - - -some caIcqus---:g
/2
Go A(CO):#Cg)fcg |x—y\d(x,y)
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MG == - o =
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Motivating Examples

What is the average distance A between two points in [0,1]?

1
A—/ |x — yld(x,y) = - - -some caIcqus---:g
12
Go A(CO):#Cg)fcg |x—y\d(x,y)
G ——— — AlG) = ﬁclz)fcf Ix = yld(x,y)
G — — — — A@)=gg S x—yldxy)
G - - -- - = == AG)=gg Jax—yldlxy)
Ne Gk - - - -- e s AL = lime A(Cr)

What is the average distance A between two points in C =, Cx?
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Hausdorff Measure and Dimension

[0, 1] [0,3] x [0,2] O

Ball of radius r

For each s > 0 and each subset A of the R"” denote the s-dimensional
Hausdorff measure of A as by H*(A).

Scott Harper Throwing Darts at Fractals 13th November 2015 4 /17



Hausdorff Measure and Dimension

[0, 1] [0,3] x [0,2] Q

Ball of radius r

For each s > 0 and each subset A of the R" denote the s-dimensional
Hausdorff measure of A as by H*(A).
For each A C R” there is a unique value d € [0, 0o] such that

- for s < d H*(A) = o0;

- for s > d H*(A) = 0.
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Hausdorff Measure and Dimension

[0, 1] [0,3] x [0,2] Q

Ball of radius r

For each s > 0 and each subset A of the R"” denote the s-dimensional
Hausdorff measure of A as by H*(A).

For each A C R” there is a unique value d € [0, 0o] such that
- for s < d H*(A) = o0;
- for s > d H*(A) = 0.

We call d the Hausdorff dimension of A.
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Average Distance

Recall: The limiting average distance of C is

_ 1
AL = ||I'<n m /Ck2 [x = yld(x, y).
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Average Distance

Recall: The limiting average distance of C is
A= lim—t [ = yld(xy)
T L(G)? c yIave )

Define the Hausdorff average distance of C as

1 S S
Ay = ’HS(C)Z/Cz |x — y|d(H® x H®)(x,y).
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Average Distance

Recall: The limiting average distance of C is
A= lim—t [ = yld(xy)
T L(G)? c yIave )

Define the Hausdorff average distance of C as

1 S S
Ay = ’HS(C)z/Cz |x — y|d(H® x H®)(x,y).

Proposition

For the middle-third Cantor set A, = Ay = 3.
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Sketch of Proof

For each k € N let Ly = [0,1] N G and let Ry = [3,1] N Gy

[1x=yidiey) =2 [1x=yidtxn)+2 [ [ 1x= yiaxdy

i 2., Liy1Riy1
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Sketch of Proof

For each k € N let Ly = [0,1] N G and let Ry = [3,1] N Gy

[1x=yidiey) =2 [1x=yidtxn)+2 [ [ 1x= yiaxdy

i 2., Liy1Riy1

Note: £(Lk) = %E(Ck), A(Lk+1) = %A(Ck), E(Lk+1) = %E(Ck).

Scott Harper Throwing Darts at Fractals 13th November 2015 6 /17



Sketch of Proof

For each k € N let Ly = [0,1] N G and let Ry = [3,1] N Gy

[1x=yidiey) =2 [1x=yidtxn)+2 [ [ 1x= yiaxdy

i 2., Liy1Riy1

Note: £(Lk) = %E(Ck), A(Lk+1) = %A(Ck), E(Lk+1) = %E(Ck).
We obtain the recurrence relation

1 1
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Sketch of Proof

For each k € N let Ly = [0,1] N G and let Ry = [3,1] N Gy

[1x=yidiey) =2 [1x=yidtxn)+2 [ [ 1x= yiaxdy

i 2., Liy1Riy1

Note: £(Lk) = %E(Ck), A(Lk+1) = %A(Ck), E(Lk+1) = %E(Ck).
We obtain the recurrence relation

1 1

Solving as k — oo gives
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More General Setting

Before: Let G; = [0, %] U [%, 1] and extend self-similarly.
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Now: Let C; = [a1,a1 +n]U---Ulan, ay + rn] and extend self-similarly.
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More General Setting

Before: Let G; = [0, %] U [%, 1] and extend self-similarly.

Now: Let C; = [a1,a1 +n]U---Ulan, ay + rn] and extend self-similarly.
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More General Setting

Before: Let G; = [0, %] U [%, 1] and extend self-similarly.

Now: Let C; = [a1,a1 +n]U---Ulan, ay + rn] and extend self-similarly.

G
G

0 1

ai aat+naa+nr as a+1r
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More General Setting

Before: Let G; = [0, %] U [%, 1] and extend self-similarly.

Now: Let C; = [a1,a1 +n]U---Ulan, ay + rn] and extend self-similarly.
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More General Setting

Before: Let G; = [0, %] U [%, 1] and extend self-similarly.

Now: Let C; = [a1,a1 +n]U---Ulan, ay + rn] and extend self-similarly.

G 1

G ar ait+hn @ a+n a3 as + r3

G —- — - — —_ - —
N Ck === == SR e

Before: Choose a section of C; according to the probability vector (%, %)
and extend self-similarly. (Within the section choose uniformly.)

Scott Harper Throwing Darts at Fractals 13th November 2015 7/17



More General Setting

Before: Let G; = [0, %] U [%, 1] and extend self-similarly.

Now: Let C; = [a1,a1 +n]U---Ulan, ay + rn] and extend self-similarly.

G 1

G ar ait+hn @ a+n a3 as + r3

G —- — - — —_ - —
N Ck === == SR e

Before: Choose a section of C; according to the probability vector (%, %)
and extend self-similarly. (Within the section choose uniformly.)

Now: Choose a section of C; according to the vector p = (p1, p2,--.,PN)
and extend self-similarly. (Within the section choose uniformly.)

Scott Harper Throwing Darts at Fractals 13th November 2015 7/17



More General Setting

Before: Let G; = [0, %] U [%, 1] and extend self-similarly.

Now: Let C; = [a1,a1 +n]U---Ulan, ay + rn] and extend self-similarly.

G

0 1

G ar ait+hn @ a+n a3 as + r3
G —- — - — —_ - —
N Ck === == SR e

Before: Choose a section of C; according to the probability vector (%, %)
and extend self-similarly. (Within the section choose uniformly.)

Now: Choose a section of C; according to the vector p = (p1, p2,--.,PN)
for first point then q = (g1, g2, - . ., gn) for second point and extend
self-similarly. (Within the section choose uniformly.)
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Average Distance

The corresponding average distance of Cy is

,u
geok(p q Z r / |X_y|d(x7}/)
hif i<

lil=lil=kK
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Average Distance

The corresponding average distance of Cy is

,u
geok(p q Z r / |X_y|d(x7}/)
hif i<

lil=lil=k
Define the geometric average distance of C as

Ageo(p7 p) = I';;n Ageo,k(pa q)-
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Average Distance

The corresponding average distance of Cy is

,u
geok(p q Z r / |X_y|d(x7}/)
hif i<

lil=lil=k
Define the geometric average distance of C as

Ageo(p7 p) = I';;n Ageo,k(pa q)-

Define the average distance of C as

Alkp, 11q) = /Cz [x = yld(pp X pq)(x, y).
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Average Distance

The corresponding average distance of Cy is

,u
geok(p q Z r / |X_y|d(x7}/)
hif i<

lil=lil=k
Define the geometric average distance of C as

Ageo(p7 p) = I';;n Ageo,k(pa CI)-

Define the average distance of C as
Ak, Hq) = /C2 [x = yld(up % pq)(x, y)-

We show that Ageo(P, a) = A(up, q)-
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Particular Average Distances

Recall the average distances

. 1
AL = “Ln E(Ck)Z/cg Ix — yld(x, y),

1 S S
AHsz(C)z/CZ Ix = yld(HE X HE)(x, y).
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Particular Average Distances

Recall the average distances

1
AL_“LnAC(Ck)Z/Cf Ix —yld(x,y),

1 S S
At = 0T o X = Y10 X H) (),

pr:q:(%?%a:%) Wheres:Zirithen A(Mp,ﬂq):AL-
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Particular Average Distances

Recall the average distances

) 1
AL =lim E(Ck)Z/Ck? Ix = yld(x,y),

1 S S
AHzHS(C)z/@ Ix = yld(HE X HE)(x, y).

pr:q:(%?%av%) Wheres:Zirithen A(Mp,ﬂq):AL-

For an IFS C satisfying the OSC with contraction ratios ri, ra, . . ., ry there
is a unique real number s such that ), r? = 1.
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Particular Average Distances

Recall the average distances

) 1
AL =lim E(Ck)Z/Ck? Ix = yld(x,y),

1 S S
AHzHS(C)z/@ Ix = yld(HE X HE)(x, y).

pr:q:(%?%av%) Wheres:Zirithen A(Mp,ﬂq):AL-

For an IFS C satisfying the OSC with contraction ratios ri, ra, . . ., ry there
is a unique real number s such that )", r? = 1. Moreover, s = dimy(C).
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Particular Average Distances

Recall the average distances

) 1
AL= |'E1£(Ck)2/ck2 Ix = yld(x,y),
1
Ay = — y|d(HS x HE :
0= e L b0 <) )

pr:q:(%?%av%) Wheres:Zirithen A(Mp,ﬂq):AL-
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Particular Average Distances

Recall the average distances

) 1
AL= |'E1£(Ck)2/ck2 Ix = yld(x,y),
1
Ay = — y|d(HS x HE :
0= e L b0 <) )

pr:q:(%?%av%) Wheres:Zirithen A(Mp,ﬂq):AL-

For an IFS C satisfying the OSC with contraction ratios ri, ra, . . ., ry there
is a unique real number s such that )", r? = 1. Moreover, s = dimy(C).

fp=q=(ri,r5,...,ry) where s = dimy(C) then A(up, iiq) = AH.
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The Average Distance Theorem

For m = (71, ™2, ..., mN) write B, = 1722‘:7“:; Write s;j for sign(i — j).
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The Average Distance Theorem

For m = (71, ™2, ..., mN) write B, = P%:iﬂ’:r Write s;j for sign(i — j).

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences (a;); and (r;); and let
p=(p1,p2,---,pn) and q = (g1, q2, - .., qn) be probability vectors. Then

A(pps o) = E pigin: (Z pigilai — aj| + szsllp’qlr' + Bq Zsllqulrl> .

i i i
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The Average Distance Theorem

> mia;

For m = (m1,m2,...,mN) write By = TS Write s; ; for sign(i — j).

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences (a;); and (r;); and let
p=(p1,p2,---,pn) and q = (g1, q2, - .., qn) be probability vectors. Then

1
App, p1p) = =S (Z pigilai — aj| + By > si,ipigiri + Bq Y Si,jPJQifi> -

iJ i.J ij

Sketch of Proof

v
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The Average Distance Theorem

> mia;

For m = (m1,m2,...,mN) write By = TS Write s; ; for sign(i — j).

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences (a;); and (r;); and let
p=(p1,p2,---,pn) and q = (g1, q2, - .., qn) be probability vectors. Then

1
A(/J“WUP) W (Z P;ql|3: - aj| T szsljprqu/ aF Bq Zsljqulrl> .

) i )

Sketch of Proof
Write Ak = Ageo,k(upa Uq)

v
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The Average Distance Theorem

> mia;

For m = (m1,m2,...,mN) write By = TS Write s; ; for sign(i — j).

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences (a;); and (r;); and let
p=(p1,p2,---,pn) and q = (q1,q2,--.,qn) be probability vectors. Then

1
Aptp, pip) = m (Z pigilai — aj| + Bp Zsljplqul + Bq Z&JPJQW) .

)

Sketch of Proof
Write Ak = Ageo,k(ktp, tiq)- We have Ari1 = (37, pigiri) Ak + Yk where

Yic = Zpiqi|ai —aj| + B, Zsi,jpi%'ri + Bq Zsi,jqu,'fi.

ij ij ij

v
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The Average Distance Theorem

> mia;

For m = (m1,m2,...,mN) write By = TS Write s; ; for sign(i — j).

Theorem (Allen, Edwards, H, Olsen)

Let C be defined as above in terms of the sequences (a;); and (r;); and let
p=(p1,p2,---,pn) and q = (q1,q2,--.,qn) be probability vectors. Then

1
Aptp, pip) = m (Z pigilai — aj| + Bp Zsljplqul + Bq Z&JPJQW) .

)

Sketch of Proof
Write Ak = Ageo,k(ktp, tiq)- We have Ari1 = (37, pigiri) Ak + Yk where

Yic = Zpiqi|ai —aj| + B, Zsi,jpi%'ri + Bq Zsi,jqu,'fi.

ij ij ij

The result follows. L)
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Particular Average Distances

Corollary (Leary et al.)

AL = —ssz_if 7 (Z,J rirj|lai — aj| + 22— Z riaj Zus,]rl rJ) where S =" ;.
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Particular Average Distances

Corollary (Leary et al.)

AL:—isz_lz:[ri <Z,Jr,rj|a, aj| + 25" ,r,a, Zus'd' )WhereS it

Corollary

_ 1 >ira st
AH_W(Z i rer s|a, aj|+2i—/s‘+f 1) Sigti J)wheres_dlmH(C)
o

v
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Particular Average Distances

—~
~—

Corollary (Leary et al

Al= o<1 12 ,- <Z,Jr,rj|a, aj| + 2=, Z riaj Z:JS'Jr' rJ) where S =" ;.

Corollary
E, r/ ai S+1
AH 1— Z r5+ (Zl |a, aj|+2?- ’JS,J F J)Wheres—dlmH(C)
Example
Consider C where N =2, a; =0, 32 % n=- and rn = % Then
AL =8/21 ~0.381 and Ay = ~ 0. 385

(4+xf )

v
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Higher Moments

The nth moment is

My = [ b=yl % a)(x.)

Scott Harper Throwing Darts at Fractals 13th November 2015 12 /17



Higher Moments

The nth moment is

My = [ b=yl % a)(x.)

New setting: N=2, 5 =rn=r and p=q = (p1, p2).
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Higher Moments

The nt" moment is
M, = /C2 Ix — y|"d(pp X pq)(x,y).

New setting: N=2, 5 =rn=r and p=q = (p1, p2).
Write p = p2 4+ p2, g = p1p> and A = 182

logr-
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Higher Moments

The nth moment is

My = [ b=yl % a)(x.)

New setting: N=2, 5 =rn=r and p=q = (p1, p2).
Write p = p2 4+ p2, g = p1p> and A = 182

logr-

Theorem (Allen, Edwards, H., Olsen)

v
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Higher Moments

The nth moment is

My = [ b=yl % a)(x.)

New setting: N=2, 5 =rn=r and p=q = (p1, p2).
Write p = p2 4+ p2, g = p1p> and A = 182

logr-

Theorem (Allen, Edwards, H., Olsen)

Limit: M, — 0 as n — oo.

v
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Higher Moments

The nth moment is

M, = / x = y|"d(itp % 11q)(x,¥):

New setting: N=2, 5 =rn=r and p=q = (p1, p2).
Write p = p2 4+ p2, g = p1p> and A = 182

logr-

Theorem (Allen, Edwards, H., Olsen)

Limit: M, — 0 as n — oo.

Rate of Decay: IngMn" — —A. (Informally: M, behaves like —x L)

v
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Higher Moments

The nth moment is

M, = / x = y|"d(itp % 11q)(x,¥):

New setting: N=2, 5 =rn=r and p=q = (p1, p2).

Write p = pf + p3, g = p1p2 and A = 2.

Theorem (Allen, Edwards, H., Olsen)
Limit: M, — 0 as n — oo.
log My s _A. (Informally: M, behaves like — L)

“logn
Nature of Decay: n®M,, = M(n) + e, for a periodic funct:on
M:(0,00) — C and sequence (), such that e, — 0.

Rate of Decay:

v
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Higher Moments

The nt" moment is
M, = / x = y|"d(s1p X f1q)(x. ).

New setting: N=2, 5 =rn=r and p=q = (p1, p2).

Write p = pf + p3, g = p1p2 and A = 2.

Theorem (Allen, Edwards, H., Olsen)

Limit: M, — 0 as n — oo.

Rate of Decay: IngMn" — —A. (Informally: M, behaves like —x L)

Nature of Decay: n®M,, = M(n) + e, for a periodic funct:on
M:(0,00) — C and sequence (), such that e, — 0.

Expression for periodic function: MN(u) = |ogr Z Z(sn)e 2mig2 e

v

Scott Harper Throwing Darts at Fractals 13th November 2015 12 /17



Proof Strategy
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Proof Strategy

We want to show that for some periodic function I1 and a sequence (¢,)n
such that ¢, — 0 we have

nAM, =N(n) +¢e, < M, =n"2N(n)+n e,
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Proof Strategy

We want to show that for some periodic function I1 and a sequence (¢,)n
such that ¢, — 0 we have

nAM, =N(n) +¢e, < M, =n"2N(n)+n e,

We will show that for some constant C € R

C
M, — n=2N(n)| < n=2=.
n
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Proof Strategy

We want to show that for some periodic function I1 and a sequence (¢,)n
such that ¢, — 0 we have

nAM, =N(n) +¢e, < M, =n"2N(n)+n e,

We will show that for some constant C € R

C
M, — n=2N(n)| < n=2=.
n

We have
M, — n*An(n)‘ <My — L(n)| + ‘L(n) —nAn(n)] .
where L : C — C is defined as

Mk k —

L(s) = —s‘e ®.
!
p k!
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Step 1: Linear Cone Bound (Recall: bounding |[M, — L(n)])

Recall L(s) =), %ske_s.
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Step 1: Linear Cone Bound (Recall: bounding |[M, — L(n)])

Recall L(s) =), %ske_s.

For 6 < 7 define the linear cone as Sy = {s | |arg(s)| < 6}.
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Step 1: Linear Cone Bound (Recall: bounding |[M, — L(n)])

Recall L(s) = 3", Fheskes.

For 6 < 7 define the linear cone as Sy = {s | |arg(s)| < 6}.

Theorem (Jacquet-Szpankowksi)

Let (t,)n be a sequence of bounded positive numbers and define

f:C—Cbyf(s)=>,2s"e".

Suppose that there exist 6 < 72T and R > 0 such that for |s| > R
Q scS = |[f(s)| < A| 0 for some A,D > 0;

Q s¢ Sy = |f(s)e’| < Be®l*l for some B,0 < § < 1.

Then there is a constant C such that |t, — f(n)| < Cﬁ for all n € N.
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Step 1: Linear Cone Bound (Recall: bounding |[M, — L(n)])

Recall L(s) = 3", Fheskes.

For 6 < 7 define the linear cone as Sy = {s | |arg(s)| < 6}.

Theorem (Jacquet-Szpankowksi)

Let (t,)n be a sequence of bounded positive numbers and define

f:C—Cbyf(s)=>,2s"e".

Suppose that there exist 6 < 72T and R > 0 such that for |s| > R
Q scS = |[f(s)| < A| 0 for some A,D > 0;

Q s¢ Sy = |f(s)e’| < Be®l*l for some B,0 < § < 1.

Then there is a constant C such that |t, — f(n)| < C—p5 D+1 for all n € N.

There is a constant C such that |[M, — L(n)| < G nA1+1 =n 24,

n
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Step 2: Mellin Transform (Recall: bounding |L(n) — n=2M(n)|)
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Step 2: Mellin Transform (Recall: bounding |L(n) — n=2M(n)|)

Define A : C — C as A(s) = pL(rs)e=(1=s 1 gL(—rs)e2".
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Step 2: Mellin Transform (Recall: bounding |L(n) — n=2M(n)|)

Define A : C — C as A(s) = pL(rs)e=(1=s 1 gL(—rs)e2".

Definition (The Mellin Transform)

Let a, b € [—00,00] with a < b and let f : (0,00) — R be piecewise
continuous on all compact subintervals of (0, 00) with
f(x0) = Iimsacg f(x);hm”xof(x) at all discontinuity points xg of f.

The Mellin transform of f Mf : {s € C | a < Re(s) < b} — C is defined as

Mf(s) = /000 x*7Hf(x)dx,

provided that the integral is well-defined.
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Step 2: Mellin Transform (Recall: bounding |L(n) — n=2M(n)|)
Define A : C — C as A(s) = pL(rs)e=(1=s 1 gL(—rs)e2".

Definition (The Mellin Transform)

Let a, b € [—00,00] with a < b and let f : (0,00) — R be “nice”. The
Mellin transform of f Mf : {s € C | a < Re(s) < b} — C is defined as
Mf = [;° x*"1f(x)dx, provided that the integral is well-defined.
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Step 2: Mellin Transform (Recall: bounding |L(n) — n=2M(n)|)
Define A : C — C as A(s) = pL(rs)e=(1=s 1 gL(—rs)e2".

Definition (The Mellin Transform)

Let a, b € [—00,00] with a < b and let f : (0,00) — R be “nice”. The
Mellin transform of f Mf : {s € C | a < Re(s) < b} — C is defined as
Mf = [;° x*"1f(x)dx, provided that the integral is well-defined.

Define Z : {s € C | Re(s) >0} — C as Z = MA.
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Step 2: Mellin Transform (Recall: bounding |L(n) — n=2M(n)|)
Define A : C — C as A(s) = pL(rs)e=(1=s 1 gL(—rs)e2".

Definition (The Mellin Transform)

Let a, b € [—00,00] with a < b and let f : (0,00) — R be “nice”. The
Mellin transform of f Mf : {s € C | a < Re(s) < b} — C is defined as
Mf = [;° x*"1f(x)dx, provided that the integral is well-defined.

Define Z: {s € C | Re(s) >0} — C as Z = MA. So (ML)(s) = 2L

— 1—qr—s-
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Step 2: Mellin Transform (Recall: bounding |L(n) — n=2M(n)|)

Define A : C — C as A(s) = pL(rs)e=(1=s 1 gL(—rs)e2".

Definition (The Mellin Transform)

Let a, b € [—00,00] with a < b and let f : (0,00) — R be “nice”. The
Mellin transform of f Mf : {s € C | a < Re(s) < b} — C is defined as
Mf = [;° x*"1f(x)dx, provided that the integral is well-defined.

Define Z: {s € C | Re(s) >0} — C as Z = MA. So (ML)(s) = -2

— 1—qr—s-

Theorem (The Mellin Inversion Theorem)

Consider the same setting as above. For a < ¢ < b and x > 0 we have

1 c+ioco

Flx) = — / x—=(MF)(s)ds.

27 —ico
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Step 2: Mellin Transform (Recall: bounding |L(n) — n=2M(n)|)

Define A : C — C as A(s) = pL(rs)e=(1=s 1 gL(—rs)e2".

Definition (The Mellin Transform)

Let a, b € [—00,00] with a < b and let f : (0,00) — R be “nice”. The
Mellin transform of f Mf : {s € C | a < Re(s) < b} — C is defined as
Mf = [;° x*"1f(x)dx, provided that the integral is well-defined.

Define Z: {s € C | Re(s) >0} — C as Z = MA. So (ML)(s) = -2

— 1—qr—s-

Theorem (The Mellin Inversion Theorem)

Consider the same setting as above. For a < ¢ < b and x > 0 we have

1 c+ioco

Flx) = — / x—=(MF)(s)ds.

27 —ico

So we have L(u) = - fc+i°° u=s 28 s,

T 27 Je—ioco 1—qgr—s
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >...
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >...

1 c+ioco
i /C_ioo f(s)ds — Zr(sn)

n€Z

IL(w) = u™N(u)| =
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >...

/Cfiw f(s)ds — ZTrIZr(s,,)

cC—100 nezZ

27|L(u) — u” N (u)| =
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >...

/Cfiw f(s)ds — ZTrIZr(s,,)

27|L(u) — u” N (u)| =

c—I100 HEZ
c+ioco c+iay c+iay

< / F(s)ds — / f(s)ds'-i— / F(s)ds — 21 3 " 1(s0)
c—ioco c—iay c—iay nez
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >N,

/Cfiw f(s)ds — ZTrIZr(s,,)

cC—100 nezZ

/c T f(s)ds — 21 Y x(s:)

—iay nez

27|L(u) — u” N (u)| =

IN

~+
4
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >N,

/Cfiw f(s)ds — ZTrIZr(s,,)

27|L(u) — u” N (u)| =

cC—100 nezZ
e c+iay
<-4+ / f(s)ds — 27rin(sn)
4 c—iay nez
€ c+iay . .
<+ /c_,-a F(s)ds —2mi » " v(sp)| +2mi | Y r(sa) = > r(sn)
N [n|<N |n|<N n€Z
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >Ny, N>

/:Jrioo f(s)ds — ZTFiZI‘(S,,)

2r|L(u) — u” A N(u)| =

—ioo n€EZL
c c+iay
<-4+ / f(s)ds — 27rin(s,,)
4 c—iay n€EZ
<

e c+iay . e
2t / f(s)ds — 2mi ‘Z r(sn)| +

=N n|<N
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >Ny, N>

/:Jrioo f(s)ds — ZTFiZI‘(S,,)

2r|L(u) — u”2N(u)]

—ico n€Z
c+laN
< Sy / ds—27rer(Sn)
4 c IEN nez
c+laN
€ €
< -+ s)ds — 2mi Sn) -
4 c—N n|Z<N 4
c+laN
:%Jr /E ) s)ds — i f(s)ds +%
N N
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Step 3: Residue Theorem

(Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >Ny, N>

2r|L(u) — u”2N(u)]

—ico

c c+iay
<-4+ / f(s)ds — 27rin(s,,)
4 c—iay n€EZ
c+iay
< % + / F(s)ds —2mi > x(sn)| + %
N In|<N
c+iay
=<y / f(s)ds — f(s)ds| + -
4 c—ia, r 4
N N
e d+iay d—iap c—iap e
=+ / f(s)ds+/ f(s)ds+/ f(s)ds| + -
4 c+iay d-+iay d—iap 4

Scott Harper Throwing Darts at Fractals

/:Jrioo f(s)ds — ZTFiZI‘(S,,)

n€EZL
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >Ny, N>

/iioo f(s)ds — ZTFiZI‘(S,,)

Cc—100 nezZ

2r|L(u) — u” A N(u)| =

c c+iay
<-4+ / f(s)ds — 27rin(s,,)
4 c—iay nez
c+iay
< % + / F(s)ds —2mi > x(sn)| + %
=N | <N
c+iay
=4 / f(s)ds — f(s)ds| + =
4 c—ia, r 4
N N
e d+iay d—iapy c—iay e
< -+ / f(s)ds| + / f(s)ds| + / f(s)ds| + —
4 c+iay d+iay d—iay 4
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >Ny, N>, N3

/:Jrioo f(s)ds — ZTFiZI‘(S,,)

2r|L(u) — u” A N(u)| =

—ico n€Z
c+laN
< Sy / ds—27rer(Sn)
4 c IEN nez
c+laN
€ €
< -+ s)ds — 2mi Sn) -
4 c—N n|Z<N 4
c+laN
:%Jr /E ) s)ds — i f(s)ds +%
N N
d—iay
€ € € €
<-4 - f(s)d -4+ -
74+4+/d+ia,v (s)s+4+4
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >Ny, Na, N3, Na.

/:Jrioo f(s)ds — ZTFiZI‘(S,,)

2r|L(u) — u” A N(u)| =

—ico n€Z
c+laN

< Sy / s)ds — 27i Z r(sn)

4 c IEN HEZ

e c+laN €
< -+ s)ds — 2mi Sn) -

4 c—N n|Z<N 4

€ c+iay c
=-+ / f(s)ds — f(s)ds| + —

4 c—iay My 4

d—iay

e € € €
R f(s)d -4+ -
74+4+/d+ia,v (s)s+4+4

e e Ky € €
< Z 4Lz,
=y + 4 + o + 2 + 2
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >Ny, Na, N3, Na.

/:Jrioo f(s)ds — ZTFiZI‘(S,,)

2r|L(u) — u” A N(u)| =

—ico n€Z
c+laN
< Sy / ds—27rer(Sn)
4 (o} laN HEZ
c+laN
S%—i— - ds—27r/Z r(sn) %
[n|<N
e c+tiay e
=-+ / f(s)ds — f(s)ds| + —
4 c—iay My 4
<4y /diiaNf(S)ds +245
4 4 d+iay 4 4
e ¢ Ky Ky
<z gz - a
<3 + a + -I- + =9 +e
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Step 3: Residue Theorem (Recall: bounding |L(n) — n=2M(n)|)

Let € > 0. Choose N >Ny, Na, N3, Na.

/:Jrioo f(s)ds — ZTFiZI‘(S,,)

2r|L(u) — u” A N(u)| =

—ico n€Z
c+laN
< Sy / d5_27TIZI'(5n)
4 c—iay nez
c+iay
S%—l—/CN ds—27r/Z r(sn) %
[n|<N
€ c+iay c
=-+ / f(s)ds — f(s)ds| + —
4 c—iay My 4
<4y /diiaNf(S)ds +245
4 4 dtiay 4 4
K K.
STHZH ST =4

Choosing d = A + 1 gives |L(n) — n™2MN(n)| < KA:Alffﬂ =nt&,

n
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Summary

17 /

Throwing Darts at Fractals 13th Nov




We have shown that

M, — n=2N(n)| < [M, — L(n)| + |L(n) — n=2N(n)
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We have shown that

M, — n=2N(n)| < [M, — L(n)| + |L(n) — n=2N(n)

2G
nA—

+ n*Ag
n

<

C
< nA= [ |
n
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We have shown that

M, — n=2N(n)| < [M, — L(n)| + |L(n) — n=2N(n)

2G
nA—

+ n*Ag
n

<

C
< nA= [ |
n

Questions?
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