
3
2-Generation of Finite Groups

Scott Harper

(University of Bristol)

Cambridge Junior Algebra Seminar

4th March 2016

Scott Harper 3/2-Generation of Finite Groups 4th March 2016 1 / 22



3
2-Generation of Finite Groups

Scott Harper

(University of Bristol)

Cambridge Junior Algebra Seminar

4th March 2016

Scott Harper 3/2-Generation of Finite Groups 4th March 2016 2 / 22



Generating Finite Groups

A finite group G is d-generated if G has a generating set of size d .

Write d(G ) for the least d such that G is d-generated.

Examples

Cyclic groups d(G ) = 1 if and only if G is cyclic

Dihedral group d(D2n) = 2 since D2n = 〈σ, ρ | σ2 = ρn = id, σρσ = ρ−1〉
Symmetric group d(Sn) ≤ 2 since Sn = 〈(1 2), (1 2 . . . n)〉
Alternating groups d(An) ≤ 2 since

– if n is odd An = 〈(1 2 3), (1 2 . . . n)〉
– if n is even An = 〈(1 2 3), (2 3 . . . n)〉

Elementary abelian d(Cn
2 ) = n

Are other important classes of groups 2-generated?
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Generating Finite Simple Groups

Theorem

Every finite simple group is 2-generated.

Proof

By the CFSG we can consider the following cases.

Cyclic groups

Cyclic groups are 1-generated.

Alternating groups

If n is odd then An = 〈(1 2 3), (1 2 . . . n)〉.
If n is even then An = 〈(1 2 3), (2 3 . . . n)〉.

Groups of Lie type

Steinberg, 1962

Sporadic groups

Aschbacher & Guralnick, 1984 �
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Netto’s Conjecture

E. Netto, The theory of substitutions and its application to algebra,
Trans. F. N. Cole, Ann Arbor, Michigan, (1892)

Public Domain: http://www.hathitrust.org/access use#pd
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Simple Groups: It is possible; is it probable?

Let G be a finite simple group.

Write

P(G ) =
|{(x , y) ∈ G × G | 〈x , y〉 = G}|

|G |2
.

Asymptotic Results

Netto, 1882 Conjecture: P(An) is “about” 1

Dixon, 1969 Confirmed that P(An)→ 1 as n→∞

Conjecture: P(G )→ 1 as |G | → ∞

Kantor & Lubotzky, 1990 Dixon’s conjecture confirmed for G classical

Liebeck & Shalev, 1995 Dixon’s conjecture extended to G exceptional

Lower Bound

Menezes, Quick & Roney-Dougal, 2013
P(G ) ≥ 53

90 with equality if and only if G = A6.
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3
2-Generation

Conjecture (Steinberg, 1962)

Every non-identity element of a finite simple group is in a generating pair.

A group G is 3
2 -generated if every non-identity element of G belongs to a

generating pair.

Theorem (Stein, 1998; Guralnick & Kantor, 2000)

Every finite simple group is 3
2 -generated.

A group G has spread k if for any distinct x1, . . . , xk ∈ G \ 1 there exists
an element z ∈ G such that 〈x1, z〉 = · · · = 〈xk , z〉 = G .

Write s(G ) for the greatest integer k such that G has spread k.

Theorem (Breuer, Guralnick & Kantor, 2008)

For a finite simple group G , s(G ) ≥ 2.
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Which finite groups are 3
2-generated?

Simple groups: Groups such that all proper quotients are trivial.

Groups such that all proper quotients are cyclic?

Proposition

If G is 3
2 -generated then every proper quotient of G is cyclic.

Proof

Let 1 6= N E G and fix 1 6= n ∈ N.

Since G is 3
2 -generated, there exists x ∈ G such that 〈x , n〉 = G .

In particular, 〈xN, nN〉 = G/N. Since nN is trivial in G/N, in fact,
G/N = 〈xN〉. So G/N is cyclic. �

Conjecture (Breuer, Guralnick & Kantor, 2008)

A finite group is 3
2 -generated iff every proper quotient is cyclic.
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Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D8 Alternating group A4

σσρ

σρ2 σρ3

ρρ3
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(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)
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(2 3 4)
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Generating Graphs

� Γ(G ) is disconnected and,
moreover, has isolated
vertices (i.e. s(G ) = 0).

� Γ(G ) is connected and has
diameter 2 (i.e s(G ) ≥ 2).

� Γ(G ) has a Hamiltonian cycle.

Other questions about Γ(G ):

� If the isolated vertices of Γ(G ) are removed then is Γ(G ) connected?

� Chromatic number, clique number, coclique number . . . ?

� When does Γ(G ) determine G?
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Which groups are 3
2-generated?

Main Conjecture

A finite group G is 3
2 -generated iff every proper quotient of G is cyclic.
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Need to show: For all finite groups G ,

every proper quotient of G is cyclic =⇒ G is 3
2 -generated.

It suffices to show: For all finite almost simple groups G ,

every proper quotient of G is cyclic =⇒ G is 3
2 -generated.

Note: A group G is almost simple if T ≤ G ≤ Aut(T ) for a simple group T .

Examples:G = Sn (with T = An); G = PGLn(q) (with T = PSLn(q)).
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Which groups are 3
2-generated?

Main Conjecture

A finite group is 3
2 -generated iff every proper quotient is cyclic.

Strategy: Show that 〈T , g〉 is 3
2 -generated for T simple and g ∈ Aut(T ).
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Progress so far

Alternating groups Symmetric groups: Brenner & Wiegold, 1975 & 1980

Extensions of A6: Computation

Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups

Linear groups: Burness & Guest, 2013
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Which groups are 3
2-generated?

Main Conjecture

A finite group is 3
2 -generated iff every proper quotient is cyclic.

Strategy: Show that 〈T , g〉 is 3
2 -generated for T simple and g ∈ Aut(T ).

Progress so far

Alternating groups Symmetric groups: Brenner & Wiegold, 1975 & 1980
Extensions of A6: Computation

Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups Linear groups: Burness & Guest, 2013

Problem

Classical groups Symplectic groups, Orthogonal groups, Unitary groups

Exceptional groups

Scott Harper 3/2-Generation of Finite Groups 4th March 2016 12 / 22



Uniform Spread

A group G has spread k if for any distinct x1, . . . , xk ∈ G \ 1 there exists
an element z ∈ G such that 〈x1, z〉 = · · · = 〈xk , z〉 = G .

Write s(G ) for the greatest integer k such that G has spread k.

A group G has uniform spread k if there exists a conjugacy class C such
that for any distinct x1, . . . , xk ∈ G \ 1 there exists an element z ∈ C such
that 〈x1, z〉 = · · · = 〈xk , z〉 = G .

Write u(G ) for the greatest integer k such that G has uniform spread k .

Many of the earlier results on spread, in fact, established uniform spread.
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Probabilistic Method

Let s ∈ G . Write

P(x , s) =
|{z ∈ sG | 〈x , z〉 6= G}|

|sG |
.

Lemma 1

Suppose that for any element x ∈ G of prime order P(x , s) < 1
k . Then G

has uniform spread k with respect to the conjugacy class sG .

〈x , sg 〉 6= G =⇒ x lies in a maximal subgroup of G which contains sg

=⇒ xg
−1

lies in a maximal subgroup of G which contains s
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Example: Alternating Group A5

Proposition

The alternating group A5 has uniform spread (at least) two.

Proof

1 Choose s ∈ A5 by studying maximal subgroups

Maximal subgroups of A5:

� 10 isomorphic to S3 (Example: 〈(1 2 3), (1 2)(4 5)〉);

� 5 isomorphic to A4 (Example: 〈(1 2 3), (2 3 4)〉);

� 6 isomorphic to D10 (Example: 〈(1 2 3 4 5), (2 5)(3 4)〉).

Choose s = (1 2 3 4 5).

Then M(A5, s) = {H} where H ∼= D10.
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Example: Alternating Group A5

2 Calculate P(x , s) by studying conjugacy classes

Conjugacy classes of G = A5:

idG , (1 2 3)G , (1 2)(3 4)G , (1 2 3 4 5)G , (1 3 5 2 4)G .

In this case P(x , s) ≤ |x
G∩H|
|xG | .

x has order 2 |xG | = 15 and |xG ∩H| = 5 so P(x , s) = |xG∩H|
|xG | = 5

15 = 1
3 .

x has order 3 |xG ∩ H| = 0 so P(x , s) = |xG∩H|
|xG | = 0.

x has order 5 |xG | = 12 and |xG ∩H| = 2 so P(x , s) = |xG∩H|
|xG | = 2

12 = 1
6 .

In all cases P(x , s) < 1
2 . So u(A5) ≥ 2. �
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Which groups are 3
2-generated?

Main Conjecture

A finite group is 3
2 -generated iff every proper quotient is cyclic.

Strategy: Show that 〈T , g〉 is 3
2 -generated for T simple and g ∈ Aut(T ).

Progress so far

Alternating groups Symmetric groups: Brenner & Wiegold, 1975 & 1980
Extensions of A6: Computation

Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups Linear groups: Burness & Guest, 2013

Problem

Classical groups Symplectic groups, Orthogonal groups, Unitary groups

Exceptional groups
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Symplectic Groups

Let q be an even prime power and let n ≥ 4 be even. Let V = Fn
q.

Let T = Spn(q) and let T ≤ G ≤ Aut(T ).

What is T?

Let f be a non-degenerate alternating bilinear form on V .

Define T = {A ∈ GLn(q) | f (Av ,Aw) = f (v ,w) for all v ,w ∈ V }.

What is Aut(T )?

Define σ : T → T as Aσ = (a2ij) for all A = (aij) ∈ T .

If n 6= 4, Aut(T ) = 〈T , σ〉 = T :〈σ〉. So G = T :〈σi 〉.

Theorem (H, 2016)

For q even and n ≥ 6, Spn(q) :〈σi 〉 is 3
2 -generated.
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Example: G = Spn(q) :〈σi〉, q even

1 Choose s ∈ G by studying maximal subgroups

Let σi have order e > 1 and write q = qe0 .
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Key fact: There is a bijection (with other nice properties) between
Spn(q)-classes in Spn(q)σi and Spn(q0)-classes in Spn(q0) < Spn(q).

So for all z ∈ Spn(q0) there exists s ∈ Spn(q)σi such that se = z .
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Example: G = Spn(q) :〈σi〉, q even

1 Choose s ∈ G by studying maximal subgroups

Choose s such that

se =

(
J2

A

)
∈ Spn(q0)

where A acts irreducibly on a non-degenerate (n − 2)-space (over Fq0).

� A power of se has an (n − 1)-dimensional 1-eigenspace.

� The order of se is divisible by q
n−2
2

0 + 1.
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Example: G = Spn(q) :〈σi〉, q even

2 Calculate P(x , s) by studying conjugacy classes

Recall that

P(x , s) ≤
∑

H∈M(G ,s)

|xG ∩ H|
|xG |

.

Method 1

Directly study G -classes and H-classes, paying close attention to fusing.

Method 2

Use very general results.

For example, by a theorem of Burness (2007),

|xG ∩ H| < |xG |ε

for ε ≈ 1
2 , provided that H is not in C1.
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Further Directions

Future Work: Extend to all other almost simple groups of Lie type.

Natural Question: Do any finite groups have spread exactly one?

Conjecture

The following are equivalent.

� Every proper quotient of G is cyclic.

� Γ(G ) has no isolated vertices (i.e. G has spread one).

� Γ(G ) has diameter two (i.e. G has spread two).

� Γ(G ) has a Hamiltonian cycle.
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