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Generating Finite Groups

A finite group G is d-generated if G has a generating set of size d.
Write d(G) for the least d such that G is d-generated.
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Generating Finite Groups

A finite group G is d-generated if G has a generating set of size d.
Write d(G) for the least d such that G is d-generated.

Examples

Cyclic groups d(G) =1 if and only if G is cyclic
Dihedral group d(Da,) = 2 since Da, = {(0,p | 02 = p" =id,0pc = p~1)
Symmetric group d(S,) < 2 since S, =((12),(12... n))

Alternating groups d(A,) < 2 since
—if nisodd A, = ((123),(12 ... n))
—if niseven A, = ((123),(23 ... n))

Elementary abelian d(CJ) = n

Are other important classes of groups 2-generated?
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Generating Finite Simple Groups
Every finite simple group is 2-generated. \
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Generating Finite Simple Groups
Every finite simple group is 2-generated.

Proof

By the CFSG we can consider the following cases.

Cyclic groups Cyclic groups are 1-generated.

Alternating groups If nis odd then A, = ((123),(12 ... n)).
If nis even then A, = ((123),(23 ... n)).

Groups of Lie type Steinberg, 1962
Sporadic groups  Aschbacher & Guralnick, 1984 |

Scott Harper 3/2-Generation of Finite Groups 4th March 2016 4 /22



Netto's Conjecture

If we arbitrarily select two or more substitutions of n elements,
it is to be regarded as extremely probable that the group of lowest
order which contains these is the symmetric group, or at least the
alternating group. In the case of two substitutions the probability
in favor of the symmetric group may be taken as about §, and in
favor of the alternating, but not symmetric, group as about .
In order that any given substitutions may generate a group which
is only a part of the n! possible substitutions, very special relations
are necessary, and it is highly improbable that arbitrarily chosen

A TR ST
substitutions s, = ( I.f - g

h ) should satisfy these conditions. The

i
n

exception most likely to oceur would be that all the given substitu-
tions were severally equivalent to an even number of transposi-
tions and would consequently generate the alternating group.

E. Netto, The theory of substitutions and its application to algebra,
Trans. F. N. Cole, Ann Arbor, Michigan, (1892)

Public Domain: http://www.hathitrust.org/access_use#pd
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Simple Groups: It is possible; is it probable?

Let G be a finite simple group.
Write

pg) = Ly €C TGGIJ x.y) =G}l
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Simple Groups: It is possible; is it probable?

Let G be a finite simple group.

e () € 6 x 6 | (x.y) = G}
X,y) € X X, Y) =
P(G) = .
Asymptotic Results
Netto, 1882 Conjecture: P(A,) is “about” 1
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Simple Groups: It is possible; is it probable?

Let G be a finite simple group.

Write

pg) = Hx ) €6 X6 1y =Gl

Asymptotic Results

|GI?

Netto, 1882
Dixon, 1969

Kantor & Lubotzky, 1990 Dixon's conjecture confirmed for G classical

Liebeck & Shalev, 1995

Conjecture: P(A,) is “about” 1

Confirmed that P(A,) — 1 as n — oo
Conjecture: P(G) — 1 as |G| — o0

Dixon’s conjecture extended to G exceptional
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Simple Groups: It is possible; is it probable?

Let G be a finite simple group.

e {(x,y) € 6 x G| {x,y) = G}
_ X,y X X, Y) =
P(G) = < .

Asymptotic Results

Netto, 1882 Conjecture: P(A,) is “about” 1

Dixon, 1969 Confirmed that P(A,) — 1 as n — oo
Conjecture: P(G) — 1 as |G| — o0

Kantor & Lubotzky, 1990 Dixon's conjecture confirmed for G classical

Liebeck & Shalev, 1995 Dixon's conjecture extended to G exceptional

Lower Bound

Menezes, Quick & Roney-Dougal, 2013
P(G) > g—g with equality if and only if G = Ag.

| A
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%—Generation

Conjecture (Steinberg, 1962)

Every non-identity element of a finite simple group is in a generating pair.

A group G is %—generated if every non-identity element of G belongs to a
generating pair.

Theorem (Stein, 1998; Guralnick & Kantor, 2000)

Every finite simple group is %-generated.

A group G has spread k if for any distinct x1,...,xx € G \ 1 there exists
an element z € G such that (x1,z) =--- = (x,z) = G.

Write s(G) for the greatest integer k such that G has spread k.

Theorem (Breuer, Guralnick & Kantor, 2008)

For a finite simple group G, s(G) > 2.
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Which finite groups are %—generated?
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Proposition

IfGis %-generated then every proper quotient of G is cyclic.
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Let 1 AN < Gandfix1#neN.

| N\

Since G is 3-generated, there exists x € G such that (x,n) = G.
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Proposition

IfGis %-generated then every proper quotient of G is cyclic.

Proof
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Which finite groups are %—generated?

Simple groups: Groups such that all proper quotients are trivial.

Groups such that all proper quotients are cyclic?

Proposition

IfGis %-generated then every proper quotient of G is cyclic.

Proof
Let 1 AN < Gandfix1#neN.

Since G is 3-generated, there exists x € G such that (x,n) = G.

In particular, (xN,nN) = G/N. Since nN is trivial in G/N, in fact,
G/N = (xN).
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Which finite groups are %—generated?

Simple groups: Groups such that all proper quotients are trivial.

Groups such that all proper quotients are cyclic?

Proposition

IfGis %-generated then every proper quotient of G is cyclic.

Proof
Let 1 AN < Gandfix1#neN.

Since G is 3-generated, there exists x € G such that (x,n) = G.

In particular, (xN,nN) = G/N. Since nN is trivial in G/N, in fact,
G/N = (xN). So G/N is cyclic. [ |

| A\

N,

Conjecture (Breuer, Guralnick & Kantor, 2008)

A finite group is %—generated iff every proper quotient is cyclic.

\
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg Alternating group Az
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg Alternating group Az
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Generating Graphs

<

m [(G) is disconnected and, m [(G) is connected and has
moreover, has isolated diameter 2 (i.e s(G) > 2).
vertices (i.e. s(G) =0). = [(G) has a Hamiltonian cycle.
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Generating Graphs

<

m [(G) is disconnected and, m [(G) is connected and has
moreover, has isolated diameter 2 (i.e s(G) > 2).
vertices (i.e. s(G) =0). = [(G) has a Hamiltonian cycle.

Other questions about '(G):
m |f the isolated vertices of '(G) are removed then is '(G) connected?

m Chromatic number, clique number, coclique number ...7
® When does ['(G) determine G?
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Which groups are %—generated?

Main Conjecture

A finite group G is %—generated iff every proper quotient of G is cyclic.
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Which groups are %—generated?

Main Conjecture

A finite group G is %—generated iff every proper quotient of G is cyclic.

Need to show: For all finite groups G,

every proper quotient of G is cyclic = G is %—generated.

It suffices to show: For all finite almost simple groups G,

every proper quotient of G is cyclic = G is %—generated.

Note: A group G is almost simple if T < G < Aut(T) for a simple group T.
Examples: G = S, (with T = A,); G = PGL,(q) (with T = PSL,(q)).
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Which groups are %—generated?

Main Conjecture

A finite group is %—generated iff every proper quotient is cyclic.

Strategy: Show that (T, g) is %—generated for T simple and g € Aut(T).
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Main Conjecture

A finite group is %—generated iff every proper quotient is cyclic.

Strategy: Show that (T, g) is %—generated for T simple and g € Aut(T).

Progress so far

Alternating groups Symmetric groups: Brenner & Wiegold, 1975 & 1980
Extensions of Ag: Computation
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Strategy: Show that (T, g) is %—generated for T simple and g € Aut(T).

Progress so far

Alternating groups Symmetric groups: Brenner & Wiegold, 1975 & 1980
Extensions of Ag: Computation

Sporadic groups Breuer, Guralnick & Kantor, 2008
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Strategy: Show that (T, g) is %—generated for T simple and g € Aut(T).

Progress so far

Alternating groups Symmetric groups: Brenner & Wiegold, 1975 & 1980
Extensions of Ag: Computation
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Classical groups Linear groups: Burness & Guest, 2013

Scott Harper 3/2-Generation of Finite Groups 4th March 2016 12 / 22



Which groups are %—generated?

Main Conjecture

A finite group is %—generated iff every proper quotient is cyclic.

Strategy: Show that (T, g) is %—generated for T simple and g € Aut(T).

Progress so far

Alternating groups Symmetric groups: Brenner & Wiegold, 1975 & 1980
Extensions of Ag: Computation

Sporadic groups Breuer, Guralnick & Kantor, 2008
Classical groups Linear groups: Burness & Guest, 2013

Problem

Classical groups Symplectic groups, Orthogonal groups, Unitary groups
Exceptional groups
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Uniform Spread

A group G has spread k if for any distinct xi,...,xx € G \ 1 there exists
an element z € G such that (x,z) =--- = (xx,z) = G.

Write s(G) for the greatest integer k such that G has spread k.
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A group G has uniform spread k if there exists a conjugacy class C such
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Uniform Spread

A group G has spread k if for any distinct xi,...,xx € G \ 1 there exists
an element z € G such that (x,z) =--- = (xx,z) = G.

Write s(G) for the greatest integer k such that G has spread k.

A group G has uniform spread k if there exists a conjugacy class C such
that for any distinct x1,...,xx € G \ 1 there exists an element z € C such
that (x1,z) =+ = (x,2z) = G.

Write u(G) for the greatest integer k such that G has uniform spread k.

Many of the earlier results on spread, in fact, established uniform spread.
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Probabilistic Method

Let s € G. Writ
=2 {z €55 (x,2) # G}

|
P(X,S): ’SG’
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Probabilistic Method

Let s € G. Write
_ lzes€ | (x,2) # G}

P(x,5) o]

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.
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Probabilistic Method

Let s € G. Write
_ lzes€ | (x,2) # G}
|s€] '

P(x,s)

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.

(x.5¢) # G
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Probabilistic Method

Let s € G. Write
_ lzes€ | (x,2) # G}

P(x,5) o]

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.

(x,s%) # G = x lies in a maximal subgroup of G which contains s&
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Probabilistic Method

Let s € G. Writ
=2 {z €55 (x,2) £ G}
5] |

P(x,s) = |

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.

(x,s%) # G = x lies in a maximal subgroup of G which contains s&

-1 . : :
= x% lies in a maximal subgroup of G which contains s
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Probabilistic Method

Let s € G. Write
_ lzes€ | (x,2) # G}

P(x,5) o]

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.

(x,s%) # G = x lies in a maximal subgroup of G which contains s&

-1 . : :
= x% lies in a maximal subgroup of G which contains s

Let M(G,s) be the set of maximal subgroups of G which contain s.
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Probabilistic Method

Let s € G. Write
_ lzes€ | (x,2) # G}
|s€] '

P(x,s)

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.

(x,s8) # G = x lies in a maximal subgroup of G which contains s&

-1 . : :
= x% lies in a maximal subgroup of G which contains s

Let M(G,s) be the set of maximal subgroups of G which contain s.

G
P(x,s) < Y X=nH|

x|
HeM(G,s)
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Example: Alternating Group As

Proposition

The alternating group As has uniform spread (at least) two.
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The alternating group As has uniform spread (at least) two.
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Choose s € As by studying maximal subgroups

Maximal subgroups of As:
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Example: Alternating Group As

Proposition
The alternating group As has uniform spread (at least) two.

Proof

Choose s € As by studying maximal subgroups

Maximal subgroups of As:
= 10 isomorphic to S3 (Example: ((123),(12)(45)));
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Proof

Choose s € As by studying maximal subgroups

Maximal subgroups of As:
= 10 isomorphic to S3 (Example: ((123),(12)(45)));
m 5 isomorphic to As (Example: ((123),(234)));
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Example: Alternating Group As

Proposition
The alternating group As has uniform spread (at least) two.

Proof

Choose s € As by studying maximal subgroups

Maximal subgroups of As:
= 10 isomorphic to S3 (Example: ((123),(12)(45)));
® 5 isomorphic to As (Example: ((123),(234)));
® 6 isomorphic to Dig (Example: ((12345),(25)(34))).
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Example: Alternating Group As

Proposition

The alternating group As has uniform spread (at least) two.

Proof

Choose s € As by studying maximal subgroups

Maximal subgroups of As:

= 10 isomorphic to S3 (Example: ((123),(12)(45)));

® 5 isomorphic to As (Example: ((123),(234)));

® 6 isomorphic to Dig (Example: ((12345),(25)(34))).
Choose s = (12345).
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Example: Alternating Group As

Proposition

The alternating group As has uniform spread (at least) two.

Proof

Choose s € As by studying maximal subgroups

Maximal subgroups of As:

= 10 isomorphic to S3 (Example: ((123),(12)(45)));

® 5 isomorphic to As (Example: ((123),(234)));

® 6 isomorphic to Dig (Example: ((12345),(25)(34))).
Choose s = (12345).

Then M(As,s) = {H} where H = Dyq.

Scott Harper
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4th March 2016 15 /



Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|

In this case P(x,s) < ]
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes

Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
[x€]

In this case P(x,s) <

x has order 2
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes

Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
[x€]

In this case P(x,s) <

x has order 2 |x®| =15
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes

Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
[x€]

In this case P(x,s) <

x has order 2 [x®| =15 and [x® N H| =5
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
[x€]

In this case P(x,s) <

x has order 2 |x®| =15 and [x® N H| =5 s0 P(x,s) = |X‘i2|H| =3 =13
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
[x€]

In this case P(x,s) <

x has order 2 |x®| =15 and [x® N H| =5 s0 P(x,s) = |X‘i2|H| =3 =13

x has order 3
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
[x€]

In this case P(x,s) <

x has order 2 |x®| =15 and [x® N H| =5 s0 P(x,s) = |X‘i2|H| =3 =13

x has order 3 [x® N H|=0
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
[x€]

In this case P(x,s) <

x has order 2 |x®| =15 and [x® N H| =5 s0 P(x,s) = |X‘i2|H| =3 =13
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
[x€]

In this case P(x,s) <

x has order 2 |x®| =15 and [x® N H| =5 s0 P(x,s) = |X‘i2|H| =3 =13

x has order 3 |x¢ N H| =0so P(x,s) = |XinH| =0.

x has order 5
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
Ixel -

In this case P(x,s) <

x has order 2 |x®| =15 and [x® N H| =5 s0 P(x,s) = |X‘i2|H| =3 =13

x has order 3 |x¢ N H| =0so P(x,s) = |XinH| =0.

x has order 5 |x®| =12
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
Ixel -

In this case P(x,s) <

x has order 2 |x®| =15 and [x® N H| =5 s0 P(x,s) = |X‘i2|H| =3 =13

x has order 3 |x¢ N H| =0so P(x,s) = |XinH| =0.

x has order 5 |x®| =12 and [x® N H| =2
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

In this case P(x,s) < |x|ir;/|'4|

x has order 2 [x®| =15 and [x® N H| =5 so P(x,s) = |X‘i2|H| =3 =13
x has order 3 |xG NH|=0so P(x,s) = |X‘i2f"| —0.

x has order 5 |x®| =12 and [x® N H| =2 s0 P(x,s) = |X‘iQ|H| =2=1
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

In this case P(x,s) < |x|ir;/|'4|

x has order 2 [x®| =15 and [x® N H| =5 so P(x,s) = |X‘i2|H| =3 =13
x has order 3 |xG NH|=0so P(x,s) = |X‘i2f"| —0.

x has order 5 |x®| =12 and [x® N H| =2 s0 P(x,s) = |X‘iQ|H| =2=1

In all cases P(x,s) < 3.
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Example: Alternating Group As

Calculate P(x,s) by studying conjugacy classes
Conjugacy classes of G = As:

id®, (123)¢,(12)(34)°,(12345)¢,(13524)°.

|xCNH|
Ixel -

In this case P(x,s) <

x has order 2 [x®| =15 and [x® N H| =5 so P(x,s) = |X‘i2|H| =3 =13
x has order 3 [x® N H|=0so P(x,s) = |X‘i2f'” =0.

x has order 5 |x®| =12 and [x® N H| =2 s0 P(x,s) = |X‘iQ|H| =2=1
In all cases P(x,s) < 3. So u(As) > 2. [ |
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Which groups are %—generated?

Main Conjecture

A finite group is %—generated iff every proper quotient is cyclic.

Strategy: Show that (T, g) is %—generated for T simple and g € Aut(T).

Progress so far

Alternating groups Symmetric groups: Brenner & Wiegold, 1975 & 1980
Extensions of Ag: Computation

Sporadic groups Breuer, Guralnick & Kantor, 2008
Classical groups Linear groups: Burness & Guest, 2013

Problem

Classical groups Symplectic groups, Orthogonal groups, Unitary groups
Exceptional groups
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V =TFg.
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V =TFg.

Let T = Spn(qg) and let T < G < Aut(T).

What is T?
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V =TFg.

Let T = Spn(qg) and let T < G < Aut(T).

What is T?

Let f be a non-degenerate alternating bilinear form on V.
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V =TFg.
Let T = Spn(qg) and let T < G < Aut(T).
What is T7?

Let f be a non-degenerate alternating bilinear form on V.

Define T = {A € GL,(q) | f(Av,Aw) = f(v,w) for all v,w € V}.
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V =TFg.

Let T = Spn(qg) and let T < G < Aut(T).

What is T7?
Let f be a non-degenerate alternating bilinear form on V.

Define T = {A € GL,(q) | f(Av,Aw) = f(v,w) for all v,w € V}.

What is Aut(T)?
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V =TFg.

Let T = Spn(qg) and let T < G < Aut(T).

What is T7?
Let f be a non-degenerate alternating bilinear form on V.

Define T = {A € GL,(q) | f(Av,Aw) = f(v,w) for all v,w € V}.

What is Aut(T)?
Defineo: T — T as Ao = (a?j) forall A=(aj) e T.
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V =TFg.

Let T = Spn(qg) and let T < G < Aut(T).

What is T7

Let f be a non-degenerate alternating bilinear form on V.

Define T = {A € GL,(q) | f(Av,Aw) = f(v,w) for all v,w € V}.
What is Aut(T)?

Defineo: T — T as Ao = (a?j) forall A=(a;) e T.

If n#4, Aut(T) = (T,0) = T:(0).
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V =TFg.

Let T = Spn(qg) and let T < G < Aut(T).

What is T7?
Let f be a non-degenerate alternating bilinear form on V.

Define T = {A € GL,(q) | f(Av,Aw) = f(v,w) for all v,w € V}.
What is Aut(T)?

Defineo: T — T as Ao = (a?j) forall A=(a;) e T.

If n#4, Aut(T) = (T,0) = T:{0). So G = T:{(a').
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Symplectic Groups

Let g be an even prime power and let n > 4 be even. Let V = [Fg.

Let T = Spn(qg) and let T < G < Aut(T).

What is T7?
Let f be a non-degenerate alternating bilinear form on V.

Define T = {A € GL,(q) | f(Av,Aw) = f(v,w) for all v,w € V}.

What is Aut(T)?
Defineo: T — T as Ao = (a?j) forall A=(aj) e T.
If n# 4, Aut(T) = (T,0) = T:{0). So G = T:(o').

Theorem (H, 2016)

For q even and n > 6, Spy(q):(c’) is 3-generated.
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Example: G = Sp,(q)

Choose s € G by studying maximal subgroups

Let o' have order e > 1 and write q = q5-
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Choose s € G by studying maximal subgroups

Let o' have order e > 1 and write q = q5-

Crucial point: s & Spn(q)
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Example: G = Sp,(q):{c'), q even

Choose s € G by studying maximal subgroups

Let o' have order e > 1 and write q = q5-

Crucial point: s & Sp,(q) but s€ € Spy(q).

Strategy: Choose s such that s€ lies in few maximal subgroups of G. Then
s also lies in few maximal subgroups of G.
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Choose s € G by studying maximal subgroups

Let o' have order e > 1 and write q = q5-

Crucial point: s & Sp,(q) but s€ € Spy(q).

Strategy: Choose s such that s€ lies in few maximal subgroups of G. Then
s also lies in few maximal subgroups of G.

Which elements in Sp,(q) arise as s€ for some s € Sp,(q)o'?
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Example: G = Sp,(q):{c'), q even

Choose s € G by studying maximal subgroups

Let o' have order e > 1 and write q = q5-

Crucial point: s & Sp,(q) but s€ € Spy(q).

Strategy: Choose s such that s€ lies in few maximal subgroups of G. Then
s also lies in few maximal subgroups of G.

Which elements in Sp,(q) arise as s€ for some s € Sp,(q)o'?

Key fact: There is a bijection (with other nice properties) between
Spn(q)-classes in Spp(q)c’ and Spp(qo)-classes in Spn(q0) < Spn(q).
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Example: G = Sp,(q):{c'), q even

Choose s € G by studying maximal subgroups

Let o' have order e > 1 and write q = q5-

Crucial point: s & Spn(q) but s¢ € Spy(q).

Strategy: Choose s such that s€ lies in few maximal subgroups of G. Then
s also lies in few maximal subgroups of G.

Which elements in Sp,(q) arise as s€ for some s € Sp,(q)o'?

Key fact: There is a bijection (with other nice properties) between
Spn(q)-classes in Spp(q)c’ and Spp(qo)-classes in Spn(q0) < Spn(q).

So for all z € Sp,(qo) there exists s € Sp,(q)o’ such that s€ = z.
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Example: G = Sp,(q):{c'), q even

Choose s € G by studying maximal subgroups

s€ = <L’T> € Spn(qo)

where A acts irreducibly on a non-degenerate (n — 2)-space (over Fg).

Choose s such that
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Example: G = Sp,(q):{c'), q even

Choose s € G by studying maximal subgroups

s€ = (ng’?) € Spn(qo)

where A acts irreducibly on a non-degenerate (n — 2)-space (over Fg).

Choose s such that

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal
subgroup of G which does not contain T belongs to one of:

m Cq,...,Cg (a family of geometric subgroups);
m S (the family of almost simple irreducible subgroups).
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Example: G = Sp,(q):{c'), q even

Choose s € G by studying maximal subgroups

s€ = (ng’?) € Spn(qo)

where A acts irreducibly on a non-degenerate (n — 2)-space (over Fg).

Choose s such that

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal
subgroup of G which does not contain T belongs to one of:

m Cq,...,Cg (a family of geometric subgroups);
m S (the family of almost simple irreducible subgroups).

® A power of s€ has an (n — 1)-dimensional 1-eigenspace.
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Example: G = Sp,(q):{c'), q even

Choose s € G by studying maximal subgroups

s€ = (J—Q’T> € Spn(qo)

where A acts irreducibly on a non-degenerate (n — 2)-space (over Fg).

Choose s such that

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal
subgroup of G which does not contain T belongs to one of:

m Cq,...,Cg (a family of geometric subgroups);
m S (the family of almost simple irreducible subgroups).

® A power of s€ has an (n — 1)—dimensiona| 1-eigenspace.

m The order of s€ is divisible by qo2 + 1.
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Example: G = Sp,(q):{c'), q even

Calculate P(x,s) by studying conjugacy classes

Recall that

IXC N H|
P(X,S) S Z W
HeM(G,s)
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Example: G = Sp,(q):{c'), q even

Calculate P(x,s) by studying conjugacy classes

Recall that

IXC N H|
P(X, S) S Z W
HeM(G,s)

Directly study G-classes and H-classes, paying close attention to fusing. \

Use very general results. For example, by a theorem of Burness (2007),

IxC N H| < |xC)°

for ¢ ~ % provided that H is not in Cy.
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Further Directions

Future Work: Extend to all other almost simple groups of Lie type.
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Further Directions

Future Work: Extend to all other almost simple groups of Lie type.

Natural Question: Do any finite groups have spread exactly one?

o

Conjecture
The following are equivalent.
m Every proper quotient of G is cyclic.
® [(G) has no isolated vertices (i.e. G has spread one).

® [(G) has diameter two (i.e. G has spread two).

® [(G) has a Hamiltonian cycle.
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