$\frac{3}{2}$ -Generation of Finite Groups

Scott Harper (University of Bristol)

Postgraduate Group Theory Conference 30th June 2016

$\frac{3}{2}$ -Generation of Finite Groups

Scott Harper (University of Bristol)

Postgraduate Group Theory Conference 30th June 2016

$\frac{3}{2}$ -Generation of Finite Groups

Scott Harper (University of Bristol)

Postgraduate Group Theory Conference 30th June 2016

A finite group G is *d*-generated if G has a generating set of size d.

A finite group G is *d*-generated if G has a generating set of size d.

Cyclic groups are 1-generated

A finite group G is *d*-generated if G has a generating set of size d.

Cyclic groups are 1-generated

Dihedral groups are 2-generated: $D_{2n} = \langle \sigma, \rho \mid \sigma^2 = \rho^n = 1, \sigma \rho \sigma = \rho^{-1} \rangle$

A finite group G is *d*-generated if G has a generating set of size d.

Cyclic groups are 1-generated

Dihedral groups are 2-generated: $D_{2n} = \langle \sigma, \rho \mid \sigma^2 = \rho^n = 1, \sigma \rho \sigma = \rho^{-1} \rangle$

Symmetric groups are 2-generated: $S_n = \langle (12), (12 \dots n) \rangle$

A finite group G is *d*-generated if G has a generating set of size d.

Cyclic groups are 1-generated

Dihedral groups are 2-generated: $D_{2n} = \langle \sigma, \rho \mid \sigma^2 = \rho^n = 1, \sigma \rho \sigma = \rho^{-1} \rangle$

Symmetric groups are 2-generated: $S_n = \langle (12), (12 \dots n) \rangle$

Alternating groups are 2-generated: - if *n* is odd $A_n = \langle (123), (12 \dots n) \rangle$ - if *n* is even $A_n = \langle (123), (23 \dots n) \rangle$

A finite group G is *d*-generated if G has a generating set of size d.

Cyclic groups are 1-generated

Dihedral groups are 2-generated: $D_{2n} = \langle \sigma, \rho \mid \sigma^2 = \rho^n = 1, \sigma \rho \sigma = \rho^{-1} \rangle$

Symmetric groups are 2-generated: $S_n = \langle (12), (12 \dots n) \rangle$

Alternating groups are 2-generated: - if *n* is odd $A_n = \langle (123), (12 \dots n) \rangle$ - if *n* is even $A_n = \langle (123), (23 \dots n) \rangle$

Theorem (Steinberg 1962; Aschbacher & Guralnick 1984)

Every finite simple group is 2-generated.

Theorem (Stein 1998; Guralnick & Kantor 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Theorem (Stein 1998; Guralnick & Kantor 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Main Question

Which finite groups are $\frac{3}{2}$ -generated?

Theorem (Stein 1998; Guralnick & Kantor 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Main Question

Which finite groups are $\frac{3}{2}$ -generated?

Simple groups: Groups such that all proper quotients are trivial.

Theorem (Stein 1998; Guralnick & Kantor 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Main Question

Which finite groups are $\frac{3}{2}$ -generated?

Simple groups: Groups such that all proper quotients are trivial. Any more? Groups such that all proper quotients are cyclic?

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

Proof

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

Proof

Let $1 \neq N \trianglelefteq G$ and fix $1 \neq n \in N$.

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

Proof

Let $1 \neq N \trianglelefteq G$ and fix $1 \neq n \in N$.

Since G is $\frac{3}{2}$ -generated, there exists $x \in G$ such that $\langle x, n \rangle = G$.

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

Proof

Let $1 \neq N \trianglelefteq G$ and fix $1 \neq n \in N$.

Since G is $\frac{3}{2}$ -generated, there exists $x \in G$ such that $\langle x, n \rangle = G$. In particular, $\langle xN, nN \rangle = G/N$.

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

Proof

Let $1 \neq N \trianglelefteq G$ and fix $1 \neq n \in N$.

Since G is $\frac{3}{2}$ -generated, there exists $x \in G$ such that $\langle x, n \rangle = G$. In particular, $\langle xN, nN \rangle = G/N$. Since nN is trivial in G/N, in fact, $G/N = \langle xN \rangle$.

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

Proof

Let $1 \neq N \trianglelefteq G$ and fix $1 \neq n \in N$.

Since G is $\frac{3}{2}$ -generated, there exists $x \in G$ such that $\langle x, n \rangle = G$. In particular, $\langle xN, nN \rangle = G/N$. Since nN is trivial in G/N, in fact, $G/N = \langle xN \rangle$. So G/N is cyclic.

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

Proof

Let $1 \neq N \trianglelefteq G$ and fix $1 \neq n \in N$.

Since G is $\frac{3}{2}$ -generated, there exists $x \in G$ such that $\langle x, n \rangle = G$. In particular, $\langle xN, nN \rangle = G/N$. Since nN is trivial in G/N, in fact, $G/N = \langle xN \rangle$. So G/N is cyclic.

Conjecture (Breuer, Guralnick & Kantor, 2008)

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

The generating graph of a group G is the graph $\Gamma(G)$ such that

The generating graph of a group G is the graph $\Gamma(G)$ such that

• the vertices are the non-identity elements of *G*;

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

Dihedral group D_8

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

Dihedral group D_8

Alternating group A₄

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

Dihedral group D_8

Alternating group A4

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

Dihedral group D_8

Alternating group A₄

Generating Graphs

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

Dihedral group D_8

Alternating group A4

Generating Graphs

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

Dihedral group D_8

Alternating group A₄

Generating Graphs

The generating graph of a group G is the graph $\Gamma(G)$ such that

- the vertices are the non-identity elements of *G*;
- two vertices g and h are adjacent if and only if $\langle g, h \rangle = G$.

Dihedral group D_8

Alternating group A₄

Write s(G) for the greatest integer k such that G has spread k.

Write s(G) for the greatest integer k such that G has spread k.

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has spread two.

Write s(G) for the greatest integer k such that G has spread k.

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has uniform spread two.

Write s(G) for the greatest integer k such that G has spread k.

A group G has uniform spread k if there exists a conjugacy class C such that for any distinct $x_1, \ldots, x_k \in G \setminus 1$ there exists an element $z \in C$ such that $\langle x_1, z \rangle = \cdots = \langle x_k, z \rangle = G$.

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has uniform spread two.

Write s(G) for the greatest integer k such that G has spread k.

A group G has uniform spread k if there exists a conjugacy class C such that for any distinct $x_1, \ldots, x_k \in G \setminus 1$ there exists an element $z \in C$ such that $\langle x_1, z \rangle = \cdots = \langle x_k, z \rangle = G$.

Write u(G) for the greatest integer k such that G has uniform spread k.

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has uniform spread two.

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Need to show: For all finite groups G,

every proper quotient of G is cyclic \implies G is $\frac{3}{2}$ -generated.

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Need to show: For all finite groups G,

every proper quotient of G is cyclic \implies G is $\frac{3}{2}$ -generated.

It suffices to show: For all finite almost simple groups G,

every proper quotient of G is cyclic \implies G is $\frac{3}{2}$ -generated.

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Need to show: For all finite groups G,

every proper quotient of G is cyclic \implies G is $\frac{3}{2}$ -generated.

It suffices to show: For all finite almost simple groups G,

every proper quotient of G is cyclic \implies G is $\frac{3}{2}$ -generated.

Note: A group G is almost simple if $T \leq G \leq Aut(T)$ for a simple group T.

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Need to show: For all finite groups G,

every proper quotient of G is cyclic \implies G is $\frac{3}{2}$ -generated.

It suffices to show: For all finite almost simple groups G,

every proper quotient of G is cyclic \implies G is $\frac{3}{2}$ -generated.

Note: A group G is almost simple if $T \le G \le Aut(T)$ for a simple group T. Examples: $G = S_n$ (with $T = A_n$); $G = PGL_n(q)$ (with $T = PSL_n(q)$).

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Strategy: Show $\langle T, g \rangle$ is $\frac{3}{2}$ -generated for T simple and $g \in Aut(T)$.

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Strategy: Show $\langle T, g \rangle$ is $\frac{3}{2}$ -generated for T simple and $g \in Aut(T)$.

Alternating groupsBrenner & Wiegold, 1975 & 1980Sporadic groupsBreuer, Guralnick & Kantor, 2008

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Strategy: Show $\langle T, g \rangle$ is $\frac{3}{2}$ -generated for T simple and $g \in Aut(T)$.

Alternating groups Brenner & Wiegold, 1975 & 1980

Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups Linear groups: Burness & Guest, 2013

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Strategy: Show $\langle T, g \rangle$ is $\frac{3}{2}$ -generated for T simple and $g \in Aut(T)$.

Alternating groups Brenner & Wiegold, 1975 & 1980

Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups Linear groups: Burness & Guest, 2013

Classical groups Symplectic groups, Orthogonal groups, Unitary groups Exceptional groups

Main Conjecture

A finite group is $\frac{3}{2}$ -generated iff every proper quotient is cyclic.

Strategy: Show $\langle T, g \rangle$ is $\frac{3}{2}$ -generated for T simple and $g \in Aut(T)$.

Alternating groups Brenner & Wiegold, 1975 & 1980

Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups Linear groups: Burness & Guest, 2013

Classical groups Symplectic groups, Orthogonal groups, Unitary groups Exceptional groups

Project: Show $\langle T, g \rangle$ has strong spread properties when T is of Lie type.

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$.

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

What is T?

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

What is T?

Let f be a non-degenerate alternating bilinear form on V.

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

What is T?

Let f be a non-degenerate alternating bilinear form on V.

Define $Sp_n(q) = \{A \in GL_n(q) \mid f(vA, wA) = f(v, w) \text{ for all } v, w \in V\}.$

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

What is T?

Let f be a non-degenerate alternating bilinear form on V.

Define $Sp_n(q) = \{A \in GL_n(q) \mid f(vA, wA) = f(v, w) \text{ for all } v, w \in V\}.$

What is Aut(T)?

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

What is T?

Let f be a non-degenerate alternating bilinear form on V.

Define $Sp_n(q) = \{A \in GL_n(q) \mid f(vA, wA) = f(v, w) \text{ for all } v, w \in V\}.$

What is Aut(T)?

Define $\sigma: T \to T$ as $(a_{ij})\sigma = (a_{ij}^p)$.

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

What is T?

Let f be a non-degenerate alternating bilinear form on V.

Define $Sp_n(q) = \{A \in GL_n(q) \mid f(vA, wA) = f(v, w) \text{ for all } v, w \in V\}.$

What is Aut(T)?

Define $\sigma: T \to T$ as $(a_{ij})\sigma = (a_{ij}^p)$. Define $\delta = [\alpha I_{n/2}, I_{n/2}]$ for $\mathbb{F}_q^{\times} = \langle \alpha \rangle$.

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

What is T?

Let f be a non-degenerate alternating bilinear form on V.

Define $Sp_n(q) = \{A \in GL_n(q) \mid f(vA, wA) = f(v, w) \text{ for all } v, w \in V\}.$

What is Aut(T)?

Define $\sigma: T \to T$ as $(a_{ij})\sigma = (a_{ij}^p)$. Define $\delta = [\alpha I_{n/2}, I_{n/2}]$ for $\mathbb{F}_q^{\times} = \langle \alpha \rangle$. If $n \neq 4$, Aut $(T) = T: \langle \sigma \rangle$ for even q and Aut $(T) = T: \langle \delta, \sigma \rangle$ for odd q.

Let $q = p^k$ be a prime power and let $n \ge 4$ be even. Let $V = \mathbb{F}_q^n$. Write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$.

What is T?

Let f be a non-degenerate alternating bilinear form on V.

Define $Sp_n(q) = \{A \in GL_n(q) \mid f(vA, wA) = f(v, w) \text{ for all } v, w \in V\}.$

What is Aut(T)?

Define $\sigma: T \to T$ as $(a_{ij})\sigma = (a_{ij}^p)$. Define $\delta = [\alpha I_{n/2}, I_{n/2}]$ for $\mathbb{F}_q^{\times} = \langle \alpha \rangle$. If $n \neq 4$, Aut $(T) = T: \langle \sigma \rangle$ for even q and Aut $(T) = T: \langle \delta, \sigma \rangle$ for odd q.

Theorem (H, 2016)

If $n \neq 4$ then $u(G) \ge 2$ and $u(G) \to \infty$ as $q \to \infty$.

Let $s \in G$. Write $P(x,s) = \frac{|\{z \in s^G \mid \langle x, z \rangle \neq G\}|}{|s^G|}.$

Let
$$s \in G$$
. Write

$$P(x,s) = \frac{|\{z \in s^G \mid \langle x, z \rangle \neq G\}|}{|s^G|}.$$

Lemma 1

Suppose that for any element $x \in G$ of prime order $P(x,s) < \frac{1}{k}$. Then G has uniform spread k with respect to the conjugacy class s^{G} .

Let
$$s \in G$$
. Write

$$P(x,s) = \frac{|\{z \in s^G \mid \langle x, z \rangle \neq G\}|}{|s^G|}.$$

Lemma 1

Suppose that for any element $x \in G$ of prime order $P(x, s) < \frac{1}{k}$. Then G has uniform spread k with respect to the conjugacy class s^{G} .

 $\langle x, s^g \rangle \neq G$

Let
$$s \in G$$
. Write

$$P(x,s) = \frac{|\{z \in s^G \mid \langle x, z \rangle \neq G\}|}{|s^G|}.$$

Lemma 1

Suppose that for any element $x \in G$ of prime order $P(x,s) < \frac{1}{k}$. Then G has uniform spread k with respect to the conjugacy class s^{G} .

 $\langle x, s^g
angle
eq G \implies x$ lies in a maximal subgroup of G which contains s^g

Let
$$s \in G$$
. Write

$$P(x,s) = \frac{|\{z \in s^G \mid \langle x, z \rangle \neq G\}|}{|s^G|}.$$

Lemma 1

Suppose that for any element $x \in G$ of prime order $P(x,s) < \frac{1}{k}$. Then G has uniform spread k with respect to the conjugacy class s^{G} .

 $\langle x, s^g \rangle \neq G \implies x \text{ lies in a maximal subgroup of } G \text{ which contains } s^g \implies x^{g^{-1}} \text{ lies in a maximal subgroup of } G \text{ which contains } s$

Let
$$s \in G$$
. Write

$$P(x,s) = \frac{|\{z \in s^G \mid \langle x, z \rangle \neq G\}|}{|s^G|}.$$

Lemma 1

Suppose that for any element $x \in G$ of prime order $P(x, s) < \frac{1}{k}$. Then G has uniform spread k with respect to the conjugacy class s^{G} .

 $\langle x, s^g \rangle \neq G \implies x \text{ lies in a maximal subgroup of } G \text{ which contains } s^g \implies x^{g^{-1}} \text{ lies in a maximal subgroup of } G \text{ which contains } s$

Let $\mathcal{M}(G, s)$ be the set of maximal subgroups of G which contain s.
Probabilistic Method

Let
$$s \in G$$
. Write

$$P(x,s) = \frac{|\{z \in s^G \mid \langle x, z \rangle \neq G\}|}{|s^G|}.$$

Lemma 1

Suppose that for any element $x \in G$ of prime order $P(x, s) < \frac{1}{k}$. Then G has uniform spread k with respect to the conjugacy class s^{G} .

 $\langle x, s^{g} \rangle \neq G \implies x \text{ lies in a maximal subgroup of } G \text{ which contains } s^{g}$ $\implies x^{g^{-1}} \text{ lies in a maximal subgroup of } G \text{ which contains } s$

Let $\mathcal{M}(G, s)$ be the set of maximal subgroups of G which contain s.

Lemma 2

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

1 Choose an element $s \in G$.

- 1 Choose an element $s \in G$.
- 2 Determine the maximal subgroups $\mathcal{M}(G, s)$.

- 1 Choose an element $s \in G$.
- 2 Determine the maximal subgroups $\mathcal{M}(G, s)$.
- 3 Calculate the probability

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

- 1 Choose an element $s \in G$.
- 2 Determine the maximal subgroups $\mathcal{M}(G, s)$.
- 3 Calculate the probability

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

Example to demonstrate the method:

- 1 Choose an element $s \in G$.
- 2 Determine the maximal subgroups $\mathcal{M}(G, s)$.
- 3 Calculate the probability

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

Example to demonstrate the method:

Let $q = 2^k$ and $n \equiv 2 \pmod{4}$.

- 1 Choose an element $s \in G$.
- 2 Determine the maximal subgroups $\mathcal{M}(G, s)$.
- 3 Calculate the probability

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

Example to demonstrate the method:

Let $q = 2^k$ and $n \equiv 2 \pmod{4}$. Then $T = Sp_n(q)$ and $Aut(T) = T : \langle \sigma \rangle$.

- 1 Choose an element $s \in G$.
- 2 Determine the maximal subgroups $\mathcal{M}(G, s)$.
- 3 Calculate the probability

$$P(x,s) \leq \sum_{H\in\mathcal{M}(G,s)} \frac{|x^G\cap H|}{|x^G|}.$$

Example to demonstrate the method:

Let $q = 2^k$ and $n \equiv 2 \pmod{4}$. Then $T = Sp_n(q)$ and $Aut(T) = T : \langle \sigma \rangle$. So $G = Sp_n(q) : \langle \sigma^i \rangle$.

1 Choose an element $s \in G$.

Let σ^i have order e > 1 and write $q = q_0^e$.

1 Choose an element $s \in G$.

Let σ^i have order e > 1 and write $q = q_0^e$.

Observation 1: $s \notin Sp_n(q)$

1 Choose an element $s \in G$.

Let σ^i have order e > 1 and write $q = q_0^e$.

Observation 1: $s \notin Sp_n(q)$

This is a significant difference from the case when G is simple.

1 Choose an element $s \in G$.

Let σ^i have order e > 1 and write $q = q_0^e$.

Observation 1: $s \notin Sp_n(q)$

This is a significant difference from the case when G is simple.

Observation 2: $s^e \in Sp_n(q)$

1 Choose an element $s \in G$.

Let σ^i have order e > 1 and write $q = q_0^e$.

Observation 1: $s \notin Sp_n(q)$

This is a significant difference from the case when G is simple.

Observation 2: $s^e \in Sp_n(q)$

A central idea of the method: choose s such that we understand s^e .

1 Choose an element $s \in G$.

Let σ^i have order e > 1 and write $q = q_0^e$.

Observation 1: $s \notin Sp_n(q)$

This is a significant difference from the case when G is simple.

Observation 2: $s^e \in Sp_n(q)$

A central idea of the method: choose s such that we understand s^e .

Question: Which elements in $Sp_n(q)$ arise as s^e for some $s \in Sp_n(q)\sigma^i$?

1 Choose an element $s \in G$.

Let σ^i have order e > 1 and write $q = q_0^e$.

Observation 1: $s \notin Sp_n(q)$

This is a significant difference from the case when G is simple.

Observation 2: $s^e \in Sp_n(q)$

A central idea of the method: choose s such that we understand s^e .

Question: Which elements in $Sp_n(q)$ arise as s^e for some $s \in Sp_n(q)\sigma^i$? The Shintani map is a bijection (with other nice properties) between $Sp_n(q)$ -classes in $Sp_n(q)\sigma^i$ and $Sp_n(q_0)$ -classes in $Sp_n(q_0) < Sp_n(q)$.

1 Choose an element $s \in G$.

Let σ^i have order e > 1 and write $q = q_0^e$.

Observation 1: $s \notin Sp_n(q)$

This is a significant difference from the case when G is simple.

Observation 2: $s^e \in Sp_n(q)$

A central idea of the method: choose s such that we understand s^e .

Question: Which elements in $Sp_n(q)$ arise as s^e for some $s \in Sp_n(q)\sigma^i$? The Shintani map is a bijection (with other nice properties) between $Sp_n(q)$ -classes in $Sp_n(q)\sigma^i$ and $Sp_n(q_0)$ -classes in $Sp_n(q_0) < Sp_n(q)$.

For each $z \in Sp_n(q_0)$, $z = a^{-1}s^e a$ for some $s \in Sp_n(q)\sigma^i$ and $a \in Sp_n(\overline{\mathbb{F}_q})$.

Choose s such that

$$s^e = \left(\begin{array}{c|c} A_1 \\ \hline & A_2 \end{array} \right) \in Sp_n(q_0)$$

where A_1 and A_2 act irreducibly on non-degenerate 2- and (n-2)-spaces.

Choose s such that

$$s^e = \left(\begin{array}{c|c} A_1 \\ \hline & A_2 \end{array} \right) \in Sp_n(q_0)$$

where A_1 and A_2 act irreducibly on non-degenerate 2- and (n-2)-spaces.

Key features: A power of s^e has an (n-2)-dimensional 1-eigenspace. The eigenvalues of s^e are highly restricted.

Choose s such that

$$s^e = \left(\begin{array}{c|c} A_1 \\ \hline & A_2 \end{array} \right) \in Sp_n(q_0)$$

where A_1 and A_2 act irreducibly on non-degenerate 2- and (n-2)-spaces.

Key features: A power of s^e has an (n-2)-dimensional 1-eigenspace. The eigenvalues of s^e are highly restricted.

2 Determine the maximal subgroups $\mathcal{M}(G, s)$.

Choose s such that

$$s^e = \left(\begin{array}{c|c} A_1 \\ \hline & A_2 \end{array} \right) \in Sp_n(q_0)$$

where A_1 and A_2 act irreducibly on non-degenerate 2- and (n-2)-spaces.

Key features: A power of s^e has an (n-2)-dimensional 1-eigenspace. The eigenvalues of s^e are highly restricted.

2 Determine the maximal subgroups $\mathcal{M}(G, s)$.

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal subgroup of G which does not contain T belongs to one of:

- C_1, \ldots, C_8 (a family of geometric subgroups);
- S (the family of almost simple irreducible subgroups).

3 Calculate the probability P(x, s).

Recall that

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

3 Calculate the probability P(x, s).

Recall that

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

Method 1

Directly study G-classes and H-classes, paying close attention to fusing.

3 Calculate the probability P(x, s).

Recall that

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

Method 1

Directly study G-classes and H-classes, paying close attention to fusing.

Method 2

Use very general results.

3 Calculate the probability P(x, s).

Recall that

$$P(x,s) \leq \sum_{H \in \mathcal{M}(G,s)} \frac{|x^G \cap H|}{|x^G|}.$$

Method 1

Directly study G-classes and H-classes, paying close attention to fusing.

Method 2

Use very general results. For example, by a theorem of Burness (2007),

$$x^{\mathsf{G}} \cap H| < |x^{\mathsf{G}}|^{\varepsilon}$$

for $\varepsilon \approx \frac{1}{2}$, provided that *H* is not in C_1 .

Let $n \neq 4$ and write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$. Then $u(G) \ge 2$ and $u(G) \rightarrow \infty$ as $q \rightarrow \infty$.

Let $n \neq 4$ and write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$. Then $u(G) \ge 2$ and $u(G) \rightarrow \infty$ as $q \rightarrow \infty$.

Future Work: Prove similar results for all almost simple groups of Lie type.

Let $n \neq 4$ and write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$. Then $u(G) \ge 2$ and $u(G) \rightarrow \infty$ as $q \rightarrow \infty$.

Future Work: Prove similar results for all almost simple groups of Lie type. Generating Graphs:

Let $n \neq 4$ and write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$. Then $u(G) \ge 2$ and $u(G) \rightarrow \infty$ as $q \rightarrow \infty$.

Future Work: Prove similar results for all almost simple groups of Lie type.

Generating Graphs:

• If the isolated vertices of $\Gamma(G)$ are removed then is $\Gamma(G)$ connected?

Let $n \neq 4$ and write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$. Then $u(G) \ge 2$ and $u(G) \rightarrow \infty$ as $q \rightarrow \infty$.

Future Work: Prove similar results for all almost simple groups of Lie type.

Generating Graphs:

- If the isolated vertices of $\Gamma(G)$ are removed then is $\Gamma(G)$ connected?
- Chromatic number, clique number, coclique number ...?

Let $n \neq 4$ and write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$. Then $u(G) \ge 2$ and $u(G) \rightarrow \infty$ as $q \rightarrow \infty$.

Future Work: Prove similar results for all almost simple groups of Lie type.

Generating Graphs:

- If the isolated vertices of $\Gamma(G)$ are removed then is $\Gamma(G)$ connected?
- Chromatic number, clique number, coclique number ...?
- When does Γ(G) have a Hamiltonian cycle?

Let $n \neq 4$ and write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$. Then $u(G) \ge 2$ and $u(G) \rightarrow \infty$ as $q \rightarrow \infty$.

Future Work: Prove similar results for all almost simple groups of Lie type.

Generating Graphs:

- If the isolated vertices of Γ(G) are removed then is Γ(G) connected?
- Chromatic number, clique number, coclique number ...?
- When does Γ(G) have a Hamiltonian cycle?
- When is $G \ncong H$ but $\Gamma(G) \cong \Gamma(H)$?

Let $n \neq 4$ and write $G = \langle T, g \rangle$ where $T = PSp_n(q)$ and $g \in Aut(T)$. Then $u(G) \ge 2$ and $u(G) \rightarrow \infty$ as $q \rightarrow \infty$.

Future Work: Prove similar results for all almost simple groups of Lie type.

Generating Graphs:

- If the isolated vertices of $\Gamma(G)$ are removed then is $\Gamma(G)$ connected?
- Chromatic number, clique number, coclique number ...?
- When does Γ(G) have a Hamiltonian cycle?
- When is $G \ncong H$ but $\Gamma(G) \cong \Gamma(H)$?

Question: Is there a finite group with spread exactly one?