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A finite group G is d-generated if G has a generating set of size d.

Cyclic groups are 1-generated
Dihedral groups are 2-generated: Dy, = (0, p | 0° = p" = 1,0p0 = p~1)
Symmetric groups are 2-generated: S, = ((12),(12 ... n))

Alternating groups are 2-generated:
—if nisodd A, = ((123),(12 ... n))
—if niseven A, =((123),(23 ... n))
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Generating Finite Groups

A finite group G is d-generated if G has a generating set of size d.

Cyclic groups are 1-generated
Dihedral groups are 2-generated: Dy, = (0, p | 0° = p" = 1,0p0 = p~1)
Symmetric groups are 2-generated: S, = ((12),(12 ... n))

Alternating groups are 2-generated:
—if nisodd A, = ((123),(12 ... n))
—if niseven A, =((123),(23 ... n))

Theorem (Steinberg 1962; Aschbacher & Guralnick 1984)

Every finite simple group is 2-generated.
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generating pair.
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A group G is %—generated if every non-identity element of G belongs to a
generating pair.

Theorem (Stein 1998; Guralnick & Kantor 2000)

Every finite simple group is %—generated.

Which finite groups are %—generated?

Simple groups: Groups such that all proper quotients are trivial.
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%—Generation

A group G is %—generated if every non-identity element of G belongs to a
generating pair.

Theorem (Stein 1998; Guralnick & Kantor 2000)

Every finite simple group is %—generated.

Main Question

Which finite groups are %—generated?

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?
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IfGis %—generated then every proper quotient of G is cyclic.
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%—Generation

IfGis %—generated then every proper quotient of G is cyclic.

Proof
Let 1N <G and fix 1 £ ne N.

Since G is %—generated, there exists x € G such that (x,n) = G.

In particular, (xN,nN) = G/N. Since nN is trivial in G/N, in fact,
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%—Generation

Proposition

IfGis %—generated then every proper quotient of G is cyclic.

Proof
Let 1N <G and fix 1 £ ne N.

Since G is %—generated, there exists x € G such that (x,n) = G.

In particular, (xN,nN) = G/N. Since nN is trivial in G/N, in fact,
G/N = (xN). So G/N is cyclic. [ |

Conjecture (Breuer, Guralnick & Kantor, 2008)

A finite group is %—generated iff every proper quotient is cyclic.
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg Alternating group Ag
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg Alternating group Ag
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Spread and Uniform Spread

A group G has spread k if for any distinct x1,...,xx € G \ 1 there exists
an element z € G such that (x1,z) =--- = (x,z) = G.
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A group G has spread k if for any distinct x1,...,xx € G \ 1 there exists
an element z € G such that (x1,z) =--- = (x,z) = G.

Write s(G) for the greatest integer k such that G has spread k.
A group G has uniform spread k if there exists a conjugacy class C such

that for any distinct x1,...,xx € G \ 1 there exists an element z € C such
that (x1,z) = = (xx,2) = G.

Theorem (Breuer, Guralnick & Kantor, 2008)
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Spread and Uniform Spread

A group G has spread k if for any distinct x1,...,xx € G \ 1 there exists
an element z € G such that (x1,z) =--- = (x,z) = G.

Write s(G) for the greatest integer k such that G has spread k.
A group G has uniform spread k if there exists a conjugacy class C such

that for any distinct x1,...,xx € G \ 1 there exists an element z € C such
that (x1,z) = = (xx,2) = G.

Write u(G) for the greatest integer k such that G has uniform spread k.

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has uniform spread two.
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Which groups are %—generated?

Main Conjecture

A finite group is %—generated iff every proper quotient is cyclic.
Need to show: For all finite groups G,

every proper quotient of G is cyclic = G is %—generated.

It suffices to show: For all finite almost simple groups G,

every proper quotient of G is cyclic = G is %—generated.

Note: A group G is almost simple if T < G < Aut(T) for a simple group T.
Examples: G = S, (with T = A,); G = PGLy(q) (with T = PSL(q)).
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Main Conjecture
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Strategy: Show (T, g) is %—generated for T simple and g € Aut(T).
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Which groups are %—generated?

Main Conjecture

A finite group is %—generated iff every proper quotient is cyclic.

Strategy: Show (T, g) is %—generated for T simple and g € Aut(T).

Alternating groups Brenner & Wiegold, 1975 & 1980
Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups Linear groups: Burness & Guest, 2013

Classical groups Symplectic groups, Orthogonal groups, Unitary groups
Exceptional groups

Project: Show (T, g) has strong spread properties when T is of Lie type.
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Symplectic Groups

Let g = pX be a prime power and let n > 4 be even. Let V = Fg.
Write G = (T, g) where T = PSp,(q) and g € Aut(T).

What is T7

Let f be a non-degenerate alternating bilinear form on V.

Define Spn(q) = {A € GLn(q) | f(vA, wA) = f(v,w) for all v,w € V}.
What is Aut(T)?

Define o: T — T as (aj)o = (afj). Define § = [aly2, I2] for Fy = (a).
If n# 4, Aut(T) = T: (o) for even g and Aut(T) = T:(d,0) for odd q.
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Symplectic Groups

Let g = pX be a prime power and let n > 4 be even. Let V = Fg.
Write G = (T, g) where T = PSp,(q) and g € Aut(T).

What is T7

Let f be a non-degenerate alternating bilinear form on V.

Define Spn(q) = {A € GLn(q) | f(vA, wA) = f(v,w) for all v,w € V}.
What is Aut(T)?

Define o: T — T as (aj)o = (afj). Define § = [aly2, I2] for Fy = (a).
If n# 4, Aut(T) = T: (o) for even g and Aut(T) = T:(d,0) for odd q.

Theorem (H, 2016)
If n # 4 then u(G) > 2 and u(G) — oo as g — oo.
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P(x,5) o]

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.
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Lemma 1

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.
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Probabilistic Method

Let s € G. Write

_HzesS 2 £6H

P(x,5) o]

Lemma 1

Suppose that for any element x € G of prime order P(x,s) < % Then G

has uniform spread k with respect to the conjugacy class s°.

(x,s%) # G = x lies in a maximal subgroup of G which contains s&

-1 . : .
= x% lies in a maximal subgroup of G which contains s

Let M(G,s) be the set of maximal subgroups of G which contain s.
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Probabilistic Method

Let s € G. Write
_ lzes€ | (x,2) # G}
|s€] '

P(x,s)

Lemma 1

Suppose that for any element x € G of prime order P(x,s) < % Then G
has uniform spread k with respect to the conjugacy class s°.

(x,s%) # G = x lies in a maximal subgroup of G which contains s&

-1 . : .
= x% lies in a maximal subgroup of G which contains s

Let M(G,s) be the set of maximal subgroups of G which contain s.

Lemma 2

CNH
P(x,s) < Z w
HeM(G,s) |X |
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Determine the maximal subgroups M(G,s).
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G
CCOED Yt
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Example to demonstrate the method:

Let ¢ = 2% and n =2 (mod 4).
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Probabilistic Method

Summary of the probabilistic method:

Choose an element s € G.

Determine the maximal subgroups M(G,s).
Calculate the probability

G
CCOED Yt
HeM(G,s) ’X |

Example to demonstrate the method:
Let ¢ =25 and n =2 (mod 4). Then T = Sp,(q) and Aut(T) = T: (o).
So G = Spn(q):{a’).
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Example: G = Sp,(q):(c'), q even,

Choose an element s € G.

Let ¢/ have order e > 1 and write q = qs-
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Example: G = Sp,(q):{c'), g even, n =2 (mod 4)

Choose an element s € G.

Let ¢/ have order e > 1 and write q = qs-

Observation 1: s &€ Sp,(q)
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Choose an element s € G.

Let ¢/ have order e > 1 and write q = qs-

Observation 1: s &€ Sp,(q)

This is a significant difference from the case when G is simple.

Observation 2: s€ € Sp,(q)

A central idea of the method: choose s such that we understand s€.

Question: Which elements in Sp,(q) arise as s€ for some s € Sp,(q)o'?

The Shintani map is a bijection (with other nice properties) between
Spn(q)-classes in Sp,(q)o’ and Sp,(qo)-classes in Sp,(qo) < Spn(q).

For each z € Sp,(qo), z = a~1s€a for some s € Spn(q)o’ and a € Spy(Fy).
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Example: G = Sp,(q):{c'), g even, n =2 (mod 4)

Choose s such that

s¢ = (%) € Spn(qo)

where A; and A act irreducibly on non-degenerate 2- and (n — 2)-spaces.
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Example: G = Sp,(q):{c'), g even, n =2 (mod 4)

Choose s such that
A
s© <41’Tz> € Spn(qo)
where A; and A act irreducibly on non-degenerate 2- and (n — 2)-spaces.

Key features: A power of s€ has an (n — 2)-dimensional 1-eigenspace.

The eigenvalues of s€ are highly restricted.

Determine the maximal subgroups M(G,s).
Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal
subgroup of G which does not contain T belongs to one of:
® Cy,...,Cg (a family of geometric subgroups);

m S (the family of almost simple irreducible subgroups).
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Example: G = Sp,(q):{c'), g even, n =2 (mod 4)

Calculate the probability P(x, s).

Recall that

G
Px.s) < 3 M

|x€]
HeM(G,s)
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Example: G = Sp,(q):{c'), g even, n =2 (mod 4)

Calculate the probability P(x, s).

Recall that

IXC N H|
P(X,S) S Z W
HeM(G,s)

Method 1

Directly study G-classes and H-classes, paying close attention to fusing.
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Example: G = Sp,(q):{c'), g even, n =2 (mod 4)

Calculate the probability P(x, s).

Recall that

IXC N H|
P(X, S) S Z W
HeM(G,s)

Method 1

Directly study G-classes and H-classes, paying close attention to fusing.

Method 2

Use very general results. For example, by a theorem of Burness (2007),

IxC N H| < |xCF

for e & % provided that H is not in Cj.
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Further Directions

Theorem (H, 2016)

Let n # 4 and write G = (T, g) where T = PSp,(q) and g € Aut(T).
Then u(G) > 2 and u(G) — oo as g — oo.
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Further Directions

Theorem (H, 2016)

Let n # 4 and write G = (T, g) where T = PSp,(q) and g € Aut(T).
Then u(G) > 2 and u(G) — oo as g — oo.

Future Work: Prove similar results for all almost simple groups of Lie type.

Generating Graphs:
m If the isolated vertices of '(G) are removed then is ['(G) connected?
m Chromatic number, clique number, coclique number .. .7
® When does '(G) have a Hamiltonian cycle?
® When is G 2 H but I'(G) = T(H)?

Question: Is there a finite group with spread exactly one?
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