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Generating Finite Groups

A finite group G is d-generated if G has a generating set of size d .

Cyclic groups are 1-generated

Dihedral groups are 2-generated: D2n = 〈σ, ρ | σ2 = ρn = 1, σρσ = ρ−1〉

Symmetric groups are 2-generated: Sn = 〈(1 2), (1 2 . . . n)〉

Alternating groups are 2-generated:
– if n is odd An = 〈(1 2 3), (1 2 . . . n)〉
– if n is even An = 〈(1 2 3), (2 3 . . . n)〉

Theorem (Steinberg 1962; Aschbacher & Guralnick 1984)

Every finite simple group is 2-generated.
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3
2-Generation

A group G is 3
2 -generated if every non-identity element of G belongs to a

generating pair.

Theorem (Stein 1998; Guralnick & Kantor 2000)

Every finite simple group is 3
2 -generated.

Main Question

Which finite groups are 3
2 -generated?

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?
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3
2-Generation

Proposition

If G is 3
2 -generated then every proper quotient of G is cyclic.

Proof

Let 1 6= N E G and fix 1 6= n ∈ N.

Since G is 3
2 -generated, there exists x ∈ G such that 〈x , n〉 = G .

In particular, 〈xN, nN〉 = G/N. Since nN is trivial in G/N, in fact,
G/N = 〈xN〉. So G/N is cyclic. �

Conjecture (Breuer, Guralnick & Kantor, 2008)

A finite group is 3
2 -generated iff every proper quotient is cyclic.
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Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D8 Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)
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Spread and Uniform Spread

A group G has spread k if for any distinct x1, . . . , xk ∈ G \ 1 there exists
an element z ∈ G such that 〈x1, z〉 = · · · = 〈xk , z〉 = G .

Write s(G ) for the greatest integer k such that G has spread k.

A group G has uniform spread k if there exists a conjugacy class C such
that for any distinct x1, . . . , xk ∈ G \ 1 there exists an element z ∈ C such
that 〈x1, z〉 = · · · = 〈xk , z〉 = G .

Write u(G ) for the greatest integer k such that G has uniform spread k .

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has spread two.
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Which groups are 3
2-generated?

Main Conjecture

A finite group is 3
2 -generated iff every proper quotient is cyclic.
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Need to show: For all finite groups G ,

every proper quotient of G is cyclic =⇒ G is 3
2 -generated.

It suffices to show: For all finite almost simple groups G ,

every proper quotient of G is cyclic =⇒ G is 3
2 -generated.

Note: A group G is almost simple if T ≤ G ≤ Aut(T ) for a simple group T .

Examples:G = Sn (with T = An); G = PGLn(q) (with T = PSLn(q)).
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Which groups are 3
2-generated?

Main Conjecture

A finite group is 3
2 -generated iff every proper quotient is cyclic.

Strategy: Show 〈T , g〉 is 3
2 -generated for T simple and g ∈ Aut(T ).
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Which groups are 3
2-generated?

Main Conjecture

A finite group is 3
2 -generated iff every proper quotient is cyclic.

Strategy: Show 〈T , g〉 is 3
2 -generated for T simple and g ∈ Aut(T ).

Alternating groups Brenner & Wiegold, 1975 & 1980

Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups Linear groups: Burness & Guest, 2013

Classical groups Symplectic groups, Orthogonal groups, Unitary groups

Exceptional groups

Project: Show 〈T , g〉 has strong spread properties when T is of Lie type.
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Symplectic Groups

Let q = pk be a prime power and let n ≥ 4 be even. Let V = Fn
q.

Write G = 〈T , g〉 where T = PSpn(q) and g ∈ Aut(T ).

What is T?

Let f be a non-degenerate alternating bilinear form on V .

Define Spn(q) = {A ∈ GLn(q) | f (vA,wA) = f (v ,w) for all v ,w ∈ V }.

What is Aut(T )?

Define σ : T → T as (aij)σ = (apij). Define δ = [αIn/2, In/2] for F×q = 〈α〉.

If n 6= 4, Aut(T ) = T :〈σ〉 for even q and Aut(T ) = T :〈δ, σ〉 for odd q.

Theorem (H, 2016)

If n 6= 4 then u(G ) ≥ 2 and u(G )→∞ as q →∞.
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Probabilistic Method

Let s ∈ G . Write

P(x , s) =
|{z ∈ sG | 〈x , z〉 6= G}|

|sG |
.

Lemma 1

Suppose that for any element x ∈ G of prime order P(x , s) < 1
k . Then G

has uniform spread k with respect to the conjugacy class sG .

〈x , sg 〉 6= G =⇒ x lies in a maximal subgroup of G which contains sg

=⇒ xg
−1

lies in a maximal subgroup of G which contains s

Let M(G , s) be the set of maximal subgroups of G which contain s.

Lemma 2

P(x , s) ≤
∑

H∈M(G ,s)

|xG ∩ H|
|xG |

.
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Probabilistic Method

Summary of the probabilistic method:

1 Choose an element s ∈ G .

2 Determine the maximal subgroups M(G , s).

3 Calculate the probability

P(x , s) ≤
∑

H∈M(G ,s)

|xG ∩ H|
|xG |

.

Example to demonstrate the method:

Let q = 2k and n ≡ 2 (mod 4). Then T = Spn(q) and Aut(T ) = T :〈σ〉.

So G = Spn(q) :〈σi 〉.
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Example to demonstrate the method:

Let q = 2k and n ≡ 2 (mod 4). Then T = Spn(q) and Aut(T ) = T :〈σ〉.

So G = Spn(q) :〈σi 〉.
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Example: G = Spn(q) :〈σi〉, q even, n ≡ 2 (mod 4)

1 Choose an element s ∈ G .

Let σi have order e > 1 and write q = qe0 .
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Question: Which elements in Spn(q) arise as se for some s ∈ Spn(q)σi?

The Shintani map is a bijection (with other nice properties) between
Spn(q)-classes in Spn(q)σi and Spn(q0)-classes in Spn(q0) < Spn(q).

For each z ∈ Spn(q0), z = a−1sea for some s ∈ Spn(q)σi and a ∈ Spn(Fq).
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Example: G = Spn(q) :〈σi〉, q even, n ≡ 2 (mod 4)

Choose s such that

se =

(
A1

A2

)
∈ Spn(q0)

where A1 and A2 act irreducibly on non-degenerate 2- and (n− 2)-spaces.

Key features: A power of se has an (n − 2)-dimensional 1-eigenspace.

The eigenvalues of se are highly restricted.

2 Determine the maximal subgroups M(G , s).

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T . Any maximal
subgroup of G which does not contain T belongs to one of:

� C1, . . . , C8 (a family of geometric subgroups);

� S (the family of almost simple irreducible subgroups).
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Example: G = Spn(q) :〈σi〉, q even, n ≡ 2 (mod 4)

3 Calculate the probability P(x , s).

Recall that

P(x , s) ≤
∑

H∈M(G ,s)

|xG ∩ H|
|xG |

.

Method 1

Directly study G -classes and H-classes, paying close attention to fusing.

Method 2

Use very general results.

For example, by a theorem of Burness (2007),

|xG ∩ H| < |xG |ε

for ε ≈ 1
2 , provided that H is not in C1.
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Further Directions

Theorem (H, 2016)

Let n 6= 4 and write G = 〈T , g〉 where T = PSpn(q) and g ∈ Aut(T ).

Then u(G ) ≥ 2 and u(G )→∞ as q →∞.

Future Work: Prove similar results for all almost simple groups of Lie type.

Generating Graphs:

� If the isolated vertices of Γ(G ) are removed then is Γ(G ) connected?

� Chromatic number, clique number, coclique number . . . ?

� When does Γ(G ) have a Hamiltonian cycle?

� When is G 6∼= H but Γ(G ) ∼= Γ(H)?

Question: Is there a finite group with spread exactly one?
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