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Generating Finite Groups

Let G be a finite group.

We say that G is d-generated if G has a generating set of size d .

Cyclic groups are 1-generated

Dihedral groups are 2-generated: D2n = 〈σ, ρ | σ2 = ρn = id, σρσ = ρ−1〉

Symmetric groups are 2-generated: Sn = 〈(1 2), (1 2 . . . n)〉

Alternating groups are 2-generated:
– if n is odd An = 〈(1 2 3), (1 2 . . . n)〉
– if n is even An = 〈(1 2 3), (2 3 . . . n)〉

Are other important families of finite groups 2-generated?
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Finite Simple Groups

A group is simple if it has no proper non-trivial normal subgroups.

Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups:

� a cyclic group of prime order;

� an alternating group of degree at least 5;

� a classical group of Lie type;

� an exceptional group of Lie type;

� one of the 26 sporadic simple groups.

Theorem (Steinberg, 1962; Aschbacher & Guralnick, 1984)

Every finite simple group is 2-generated.
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Netto’s Conjecture

E. Netto, The theory of substitutions and its application to algebra,
Trans. F. N. Cole, Ann Arbor, Michigan, (1892)

Public Domain: http://www.hathitrust.org/access use#pd
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Probabilistic Generation

Write

P(G ) =
|{(x , y) ∈ G × G | 〈x , y〉 = G}|

|G |2
.

Theorem (Dixon, 1969)

P(An)→ 1 as n→∞.

Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)

If G is simple then P(G )→ 1 as |G | → ∞.

Theorem (Menezes, Quick & Roney-Dougal, 2013)

If G is simple then P(G ) ≥ 53
90 with equality if and only if G = A6.
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Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D8 Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)
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Isolated Vertices

For which finite groups G does Γ(G ) have

� no isolated vertices?

� diameter two?

Theorem

If G is simple then Γ(G ) has

� no isolated vertices;
[Stein 1998; Guralnick & Kantor 2000]

� diameter two.
[Breuer, Guralnick & Kantor, 2008]

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?
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Isolated Vertices

Proposition

If Γ(G ) has no isolated vertices then every proper quotient of G is cyclic.

Proof

Let 1 6= N E G and fix 1 6= n ∈ N. Since Γ(G ) has no isolated vertices,
there exists x ∈ G such that 〈x , n〉 = G .

In particular, 〈xN, nN〉 = G/N. Since nN is trivial in G/N, in fact,
G/N = 〈xN〉. So G/N is cyclic. �

Conjecture

The following are equivalent

� Every proper quotient of G is cyclic.

� Γ(G ) has no isolated vertices.

� Γ(G ) has diameter two.
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Current Research

Aim: Show Γ(〈T , g〉) has diameter two for T simple and g ∈ Aut(T ).

Alternating groups Brenner & Wiegold, 1975 & 1980

Sporadic groups Breuer, Guralnick & Kantor, 2008

Classical groups Linear groups: Burness & Guest, 2013

Classical groups Symplectic groups, Orthogonal groups, Unitary groups

Exceptional groups

For a prime power q and even n, the symplectic group Spn(q) ≤ GLn(q) is
the stabiliser of a non-degenerate alternating form on Fn

q.

Theorem (H, 2016)

Let n 6= 4 and write G = 〈T , g〉 where T = PSpn(q) and g ∈ Aut(T ).

Then Γ(G ) has diameter two.
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Further Questions

� If the isolated vertices of Γ(G ) are removed then is Γ(G ) connected?

� Chromatic number, clique number, coclique number . . . ?

� When does Γ(G ) have a Hamiltonian cycle?

� When is G 6∼= H but Γ(G ) ∼= Γ(H)?

σσρ

σρ2 σρ3

ρρ3

ρ2

σσρ

ρρρ3

ρ2
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