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Let G be a finite group.
We say that G is d-generated if G has a generating set of size d.
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We say that G is d-generated if G has a generating set of size d.

Cyclic groups are 1-generated

Dihedral groups are 2-generated: Do, = (0,p | 0% = p" = id,0p0 = p~ 1)

Symmetric groups are 2-generated: S, = ((12),(12 ... n))

r Alternating groups are 2-generated:
—if nisodd A, = ((123),(12 ... n))
—if niseven A, =((123),(23 ... n))
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Generating Finite Groups

Let G be a finite group.

We say that G is d-generated if G has a generating set of size d.

Cyclic groups are 1-generated

Dihedral groups are 2-generated: Do, = (0,p | 0% = p" = id,0p0 = p~ 1)

. J

Symmetric groups are 2-generated: S, = ((12),(12 ... n))

r Alternating groups are 2-generated:
—if nisodd A, = ((123),(12 ... n))
—if niseven A, =((123),(23 ... n))

Are other important families of finite groups 2-generated?
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Finite Simple Groups

A group is simple if it has no proper non-trivial normal subgroups.

Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups:

a cyclic group of prime order;

an alternating group of degree at least 5;
a classical group of Lie type;

an exceptional group of Lie type;

one of the 26 sporadic simple groups.
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Finite Simple Groups

A group is simple if it has no proper non-trivial normal subgroups.

Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups:
® a cyclic group of prime order;
m an alternating group of degree at least 5;
B 3 classical group of Lie type;

® an exceptional group of Lie type;

® one of the 26 sporadic simple groups.

Theorem (Steinberg, 1962; Aschbacher & Guralnick, 1984)

Every finite simple group is 2-generated.
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Netto's Conjecture

If we arbitrarily select two or more substitutions of n elements,
it is to be regarded as extremely probable that the group of lowest
order which contains these is the symmetric group, or at least the
alternating group. In the case of two substitutions the probability
in favor of the symmetric group may be taken as about %, and in
favor of the alternating, but not symmetric, group as about .
In order that any given substitutions may generate a group which
is only a part of the n! possible substitutions, very special relations
are necessary, and it is highly improbable that arbitrarily chosen

substitutions s, = (ﬁ' _f 140 ‘: ) should satisfy these conditions. The
exception most likely to oceur would be that all the given substitu-
tions were severally equivalent to an even number of transposi-

tions and would consequently generate the alternating group.

E. Netto, The theory of substitutions and its application to algebra,
Trans. F. N. Cole, Ann Arbor, Michigan, (1892)

Public Domain: http://www.hathitrust.org/access_use#pd
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exception most likely to oceur would be that all the given substitu-
tions were severally equivalent to an even number of transposi-
tions and would consequently generate the alternating group.
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Probabilistic Generation

Write

{xy) € 6x 6 | (xy) =G}

Pe)= aP
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Probabilistic Generation

Write
[{(x,y) € G X G| ({x,y) = G}
G2 '

P(G) =

Theorem (Dixon, 1969)

P(A,) — 1 as n — co.
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Probabilistic Generation

Write {(y) € G x G | (xoy) = G}
X,y x G| (x,y) =
P(G) = T .

Theorem (Dixon, 1969)

P(A,) — 1 as n — co.

Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)
If G is simple then P(G) — 1 as |G| — oc.
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Probabilistic Generation

Write
[{(x,y) € G X G| ({x,y) = G}
G2 '

P(G) =

Theorem (Dixon, 1969)

P(A,) — 1 as n — co.

Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)
If G is simple then P(G) — 1 as |G| — oc.

Theorem (Menezes, Quick & Roney-Dougal, 2013)

If G is simple then P(G) > % with equality if and only if G = Ag.
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg Alternating group Ag
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg Alternating group Ag
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Generating Graphs

The generating graph of a group G is the graph '(G) such that

m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg
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Generating Graphs

The generating graph of a group G is the graph '(G) such that
m the vertices are the non-identity elements of G;
® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg Alternating group Ag
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Isolated Vertices

For which finite groups G does I'(G) have

® no isolated vertices?

m diameter two?
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If G is simple then ['(G) has

® no isolated vertices;
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®m diameter two.
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Isolated Vertices

For which finite groups G does I'(G) have

® no isolated vertices?

m diameter two?

If G is simple then ['(G) has

® no isolated vertices;
[Stein 1998; Guralnick & Kantor 2000]

®m diameter two.
[Breuer, Guralnick & Kantor, 2008]

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?
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Isolated Vertices

Proposition

IfT(G) has no isolated vertices then every proper quotient of G is cyclic.
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Isolated Vertices

Proposition

IfT(G) has no isolated vertices then every proper quotient of G is cyclic.
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there exists x € G such that (x,n) = G.
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Isolated Vertices

Proposition

IfT(G) has no isolated vertices then every proper quotient of G is cyclic.

Let 1 # N < G and fix 1 # n € N. Since ['(G) has no isolated vertices,
there exists x € G such that (x,n) = G.

In particular, (xN,nN) = G/N.
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Isolated Vertices

Proposition

IfT(G) has no isolated vertices then every proper quotient of G is cyclic.

Let 1 # N < G and fix 1 # n € N. Since ['(G) has no isolated vertices,
there exists x € G such that (x,n) = G.

In particular, (xN,nN) = G/N. Since nN is trivial in G/N, in fact,
G/N = (xN).
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Isolated Vertices

Proposition

IfT(G) has no isolated vertices then every proper quotient of G is cyclic.

Let 1 # N < G and fix 1 # n € N. Since ['(G) has no isolated vertices,
there exists x € G such that (x,n) = G.

In particular, (xN,nN) = G/N. Since nN is trivial in G/N, in fact,
G/N = (xN). So G/N is cyclic. [ |
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Isolated Vertices

Proposition

IfT(G) has no isolated vertices then every proper quotient of G is cyclic.

Let 1 # N < G and fix 1 # n € N. Since ['(G) has no isolated vertices,
there exists x € G such that (x,n) = G.

In particular, (xN,nN) = G/N. Since nN is trivial in G/N, in fact,
G/N = (xN). So G/N is cyclic. |

The following are equivalent

m Every proper quotient of G is cyclic.
® [(G) has no isolated vertices.
m [(G) has diameter two.
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Current Research

Aim: Show I'({T,g)) has diameter two for T simple and g € Aut(T).
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Current Research

Aim: Show I'({T,g)) has diameter two for T simple and g € Aut(T).

Alternating groups Brenner & Wiegold, 1975 & 1980
Sporadic groups  Breuer, Guralnick & Kantor, 2008
Classical groups Linear groups: Burness & Guest, 2013

Classical groups Symplectic groups, Orthogonal groups, Unitary groups
Exceptional groups

For a prime power g and even n, the symplectic group Sp,(q) < GL,(q) is
the stabiliser of a non-degenerate alternating form on Fg.

Theorem (H, 2016)

Let n # 4 and write G = (T, g) where T = PSp,(q) and g € Aut(T).
Then T(G) has diameter two.
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Further Questions

m |f the isolated vertices of ['(G) are removed then is ['(G) connected?

m Chromatic number, clique number, coclique number .. .7
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Further Questions

m |f the isolated vertices of ['(G) are removed then is ['(G) connected?

m Chromatic number, clique number, coclique number .. .7
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Further Questions

m |f the isolated vertices of ['(G) are removed then is ['(G) connected?
m Chromatic number, clique number, coclique number .. .7

® When does [(G) have a Hamiltonian cycle?
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Further Questions

m |f the isolated vertices of ['(G) are removed then is ['(G) connected?
m Chromatic number, clique number, coclique number .. .7
® When does [(G) have a Hamiltonian cycle?

m When is G % H but [(G) = T(H)?
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Further Questions

m |f the isolated vertices of ['(G) are removed then is ['(G) connected?
m Chromatic number, clique number, coclique number .. .7

® When does [(G) have a Hamiltonian cycle?

= When is G % H but [(G) = I(H)?
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