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The Generation Game

Let G be a finite group.

A subset X ⊆ G is a generating set of G if G = 〈X 〉.

We say that G is d-generated if G has a generating set of size d .

Cyclic groups are 1-generated

Dihedral groups are 2-generated: Dn-gon = 〈σ, ρ | σ2 = ρn = 1,σρσ = ρ−1〉

Symmetric groups are 2-generated: Sn = 〈(1 2), (1 2 . . . n)〉

Alternating groups are 2-generated:

� if n is odd An = 〈(1 2 3), (1 2 . . . n)〉
� if n is even An = 〈(1 2 3), (2 3 . . . n)〉
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It’s simple . . .

How do you factorise a number a?

Repeatedly divide by big divisors

a/n1 = q1, n1/n2 = q2, . . . , nk−1/nk = qk ,

and do this so that q1, . . . , qk and nk are all prime.

(A number p is prime if p has exactly two divisors: 1 and p.)

How do you factorise a finite group G?

Repeatedly divide by big normal subgroups:

G/N1 = Q1, N1/N2 = Q2, . . . , Nk−1/Nk = Qk ,

and do this so that Q1, . . . ,Qk and Nk are all simple.

(A group S is simple if S has exactly two normal subgroups: 1 and S .)



It’s simple . . .

How do you factorise a number a?

Repeatedly divide by big divisors

a/n1 = q1, n1/n2 = q2, . . . , nk−1/nk = qk ,

and do this so that q1, . . . , qk and nk are all prime.

(A number p is prime if p has exactly two divisors: 1 and p.)

How do you factorise a finite group G?

Repeatedly divide by big normal subgroups:

G/N1 = Q1, N1/N2 = Q2, . . . , Nk−1/Nk = Qk ,

and do this so that Q1, . . . ,Qk and Nk are all simple.

(A group S is simple if S has exactly two normal subgroups: 1 and S .)



It’s simple . . .

How do you factorise a number a?

Repeatedly divide by big divisors

a/n1 = q1, n1/n2 = q2, . . . , nk−1/nk = qk ,

and do this so that q1, . . . , qk and nk are all prime.

(A number p is prime if p has exactly two divisors: 1 and p.)

How do you factorise a finite group G?

Repeatedly divide by big normal subgroups:

G/N1 = Q1, N1/N2 = Q2, . . . , Nk−1/Nk = Qk ,

and do this so that Q1, . . . ,Qk and Nk are all simple.

(A group S is simple if S has exactly two normal subgroups: 1 and S .)



It’s simple . . .

How do you factorise a number a?

Repeatedly divide by big divisors

a/n1 = q1, n1/n2 = q2, . . . , nk−1/nk = qk ,

and do this so that q1, . . . , qk and nk are all prime.

(A number p is prime if p has exactly two divisors: 1 and p.)

How do you factorise a finite group G?

Repeatedly divide by big normal subgroups:

G/N1 = Q1, N1/N2 = Q2, . . . , Nk−1/Nk = Qk ,

and do this so that Q1, . . . ,Qk and Nk are all simple.

(A group S is simple if S has exactly two normal subgroups: 1 and S .)



It’s simple . . .

How do you factorise a number a?

Repeatedly divide by big divisors

a/n1 = q1, n1/n2 = q2, . . . , nk−1/nk = qk ,

and do this so that q1, . . . , qk and nk are all prime.

(A number p is prime if p has exactly two divisors: 1 and p.)

How do you factorise a finite group G?

Repeatedly divide by big normal subgroups:

G/N1 = Q1, N1/N2 = Q2, . . . , Nk−1/Nk = Qk ,

and do this so that Q1, . . . ,Qk and Nk are all simple.

(A group S is simple if S has exactly two normal subgroups: 1 and S .)



It’s simple . . .

How do you factorise a number a?

Repeatedly divide by big divisors

a/n1 = q1, n1/n2 = q2, . . . , nk−1/nk = qk ,

and do this so that q1, . . . , qk and nk are all prime.

(A number p is prime if p has exactly two divisors: 1 and p.)

How do you factorise a finite group G?

Repeatedly divide by big normal subgroups:

G/N1 = Q1, N1/N2 = Q2, . . . , Nk−1/Nk = Qk ,

and do this so that Q1, . . . ,Qk and Nk are all simple.

(A group S is simple if S has exactly two normal subgroups: 1 and S .)



It’s simple . . .

How do you factorise a number a?

Repeatedly divide by big divisors

a/n1 = q1, n1/n2 = q2, . . . , nk−1/nk = qk ,

and do this so that q1, . . . , qk and nk are all prime.

(A number p is prime if p has exactly two divisors: 1 and p.)

How do you factorise a finite group G?

Repeatedly divide by big normal subgroups:

G/N1 = Q1, N1/N2 = Q2, . . . , Nk−1/Nk = Qk ,

and do this so that Q1, . . . ,Qk and Nk are all simple.

(A group S is simple if S has exactly two normal subgroups: 1 and S .)



Example: The symmetry group of a triangle D4

The subgroup of rotational symmetries C3 is normal in D4.

Then D4/C3 = C2. So the simple factors of D4 are C3 and C2.

Theorem For a prime p, the cyclic group Cp is simple.

Example: The symmetric group Sn for n ≥ 5

The subgroup of even permutations An is normal in Sn.

Then Sn/An = C2. So the simple factors of Sn are An and C2.

Theorem For n ≥ 5, the alternating group An is simple.
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Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups

� a cyclic group of prime order

� an alternating group of degree at least 5

� a group of Lie type

(e.g. PSLn(q))

� one of the 26 sporadic simple groups.

Caveat mathematice
There are many ways of putting simple groups together.

� Both C2 × C2 and C4 decompose into two copies of C2.

� All 49, 487, 365, 422 groups of order 1024 decompose into ten C2.

Theorem (Steinberg, 1962)

Every finite simple group is 2-generated.
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What are the chances?

E. Netto, The theory of substitutions and its application to algebra,
Trans. F. N. Cole, Ann Arbor, Michigan, (1892)

Public Domain: http://www.hathitrust.org/access use#pd



Let P(G ) be the probability that two random elements generate G .

That is,

P(G ) =
|{(x , y) ∈ G × G | 〈x , y〉 = G}|

|G |2

Now we can formalise Netto’s idea.

Netto’s Conjecture P(An)→ 1 as n→∞.

Numerical evidence

n 5 6 7 8 9 10
P(An) 0. 633 0. 588 0. 726 0. 738 0. 848 0. 875

GAP computations by N. Menezes, M. Quick and C. M. Roney-Dougal
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Cyclic groups of prime order

Let p be prime. Then

P(Cp) =
p2 − 1

p2

and so P(Cp)→ 1 as p →∞.

Eighty years later . . .

Between 1965 and 1968, Paul Erdős and Pál Turán published several
papers on random permutations and this was the birth of the field of
probabilistic group theory.

Using the work of Erdős and Turán, Dixon proved Netto’s conjecture.

Theorem (Dixon, 1969)

P(An)→ 1 as n→∞.



Cyclic groups of prime order

Let p be prime. Then

P(Cp) =
p2 − 1

p2

and so P(Cp)→ 1 as p →∞.

Eighty years later . . .
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Between 1965 and 1968, Paul Erdős and Pál Turán published several
papers on random permutations and this was the birth of the field of
probabilistic group theory.
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Dixon replaced one conjecture with another even bolder one.

Dixon’s Conjecture If G is simple then P(G )→ 1 as |G | → ∞.

As a result of the Classification, the following have been proved.

Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)

If G is simple then P(G )→ 1 as |G | → ∞.

Theorem (Menezes, Quick & Roney-Dougal, 2013)

If G is simple then P(G ) ≥ 53
90 with equality if and only if G = A6.

Summary: It’s easy to generate a finite simple group with two elements.
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2-Generation

A group G is 3
2 -generated if every non-identity element of G is contained

in a generating pair.

Theorem (Stein, 1998; Guralnick & Kantor, 2000)

Every finite simple group is 3
2 -generated.

Main Question

Which finite groups are 3
2 -generated?

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?
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� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D�

Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D�

Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2

ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D�

Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2

ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D�

Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2

ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D�

Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2

ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D�

Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D�

Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)

(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)

(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)

(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Generating Graphs

The generating graph of a group G is the graph Γ(G ) such that

� the vertices are the non-identity elements of G ;

� two vertices g and h are adjacent if and only if 〈g , h〉 = G .

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)(1 2 3) (2 4 3)

(1 3)(2 4)



Alternating group A5



Spread

A group G has spread k if for any elements x1, . . . , xk ∈ G \ 1 there exists
an element z ∈ G such that 〈x1, z〉 = · · · = 〈xk , z〉 = G .

Write s(G ) for the greatest integer k such that G has spread k .

Dihedral group D� Alternating groups A4 and A5

s(D�) = 0

Γ(D�) has an isolated vertex

s(A4), s(A5) ≥ 2

Γ(A4) and Γ(A5) have diameter 2

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has (at least) spread two.
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It suffices to show: For all finite almost simple groups G ,

every proper quotient of G is cyclic =⇒ G is 3
2 -generated.

A group G is almost simple if T ≤ G ≤ Aut(T ) for a simple group T .

Examples:G = Sn (with T = An); G = PGLn(q) (with T = PSLn(q)).
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Main Conjecture

A finite group is 3
2 -generated iff every proper quotient is cyclic.

Strategy: Show 〈T , g〉 is 3
2 -generated for T simple and g ∈ Aut(T ).

Alternating groups Brenner & Wiegold, 1975 & 1980

Sporadic groups Breuer, Guralnick & Kantor, 2008

Groups of Lie type

PSLn(q): Burness & Guest, 2013

The rest: To be done!

Project: Show 〈T , g〉 has strong spread properties when T is of Lie type.



Probabilistic Method

Let s ∈ G . Write

P(x , s) =
|{z ∈ sG | 〈x , z〉 6= G}|

|sG |

Lemma 1

Suppose that for any element x ∈ G of prime order P(x , s) < 1
k . Then G

has spread k.

〈x , sg 〉 6= G =⇒ x lies in a maximal subgroup of G which contains sg

=⇒ xg
−1

lies in a maximal subgroup of G which contains s

Let M(G , s) be the set of maximal subgroups of G which contain s.

Lemma 2

P(x , s) ≤
∑

H∈M(G ,s)

|xG ∩ H|
|xG |
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=⇒ xg
−1
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Let M(G , s) be the set of maximal subgroups of G which contain s.
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“Things done without example, in their issue, are to be fear’d”

Proposition

The alternating group A5 has spread two.

Proof

1 Choose s ∈ A5 and determine M(G , s)

Maximal subgroups of A5

� 10 isomorphic to S3

� 5 isomorphic to A4

� 6 isomorphic to DD

Choose s = (1 2 3 4 5).

Then M(A5, s) = {H} where H ∼= DD
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2 Calculate P(x , s) for x ∈ G of prime order

Conjugacy classes of G = A5:

idG , (1 2 3)G , (1 2)(3 4)G , (1 2 3 4 5)G , (1 3 5 2 4)G

In this case

P(x , s) ≤ |x
G ∩ H|
|xG |

x has order 2 |xG | = 15 and |xG ∩H| = 5 so P(x , s) = |xG∩H|
|xG | = 5

15 = 1
3 .

x has order 3 |xG ∩ H| = 0 so P(x , s) = |xG∩H|
|xG | = 0.

x has order 5 |xG | = 12 and |xG ∩H| = 2 so P(x , s) = |xG∩H|
|xG | = 2

12 = 1
6 .

In all cases P(x , s) < 1
2 . So s(A5) ≥ 2. �
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Groups of Lie Type

There is a dichotomy: classical and exceptional.

Classical groups of Lie type

Linear PSLn(q)

Symplectic PSp2m(q)

Orthogonal PΩ2m+1(q) for odd q

PΩ+
2m(q), PΩ−2m(q)

Unitary PSUn(q)

Exceptional groups of Lie type

Chevalley E6(q),E7(q),E8(q),F4(q),G2(q)

Steinberg 3D4(q), 2E6(q)

Suzuki and Ree 2B2(q), 2F4(q), 2G2(q)
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What is the simple group T?

Let q = pk be a prime power and let n ∈ N. Write V = Fn
q.

Summary You take a natural subgroup of GLn(q) and then you quotient
by scalar matrices to make sure it is simple.

Symplectic Groups

Let n = 2m and let f be a non-degenerate alternating bilinear form on V .

Define Spn(q) = {A ∈ GLn(q) | f (vA,wA) = f (v ,w) for all v ,w ∈ V }.

Then PSpn(q) = Spn(q)/Z (Spn(q)) where Z (Spn(q)) = {I ,−I}.

Odd-Dimensional Orthogonal Groups

Let n = 2m + 1 and let f be a non-deg. symmetric bilinear form on V .

Define Ωn(q) = {A ∈ GLn(q) | f (vA,wA) = f (v ,w) for all v ,w ∈ V }.

Then PΩn(q) = Ωn(q).
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What are the automorphisms of T?

Field automorphisms . . . These are typical.

Define σ : T → T as (aij)σ = (apij).

Graph-field automorphisms . . . These are weird.

If q is even and T = PSp4(q), let ρ such that ρ2 = σ.

Diagonal automorphisms . . . These are innocuous.

If q is odd, let δ ∈ PGLn(q) \ T be a diagonal matrix normalising T .

Fact

� If T = PSp2m(q) where q is even and 2m ≥ 6 then Aut(T ) = 〈T ,σ〉.
� If T = PSp4(q) where q is even then Aut(T ) = 〈T , ρ〉.
� If T = PSp2m(q) where q is odd then Aut(T ) = 〈T , δ,σ〉.
� If T = Ω2m+1(q) then Aut(T ) = 〈T , δ,σ〉.
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Results on Spread

Write T = {PSp2m(q) | m ≥ 2, q 6= 2} ∪ {Ω2m+1(q) | m ≥ 3}.

Theorem (H, 2017)

Let G = 〈T , g〉 where T ∈ T and g ∈ Aut(T ). Then s(G ) ≥ 2.

Roughly, if G1,G2,G3, . . . is a sequence of finite simple groups such that
|Gi | → ∞ then s(Gi )→∞ unless (Gi ) has one of three types of “bad
subsequence” (Guralnick & Shalev, 2003).

Theorem (H, 2017)

Let Gn = 〈Tn, gn〉 for Tn ∈ T and gn ∈ Aut(Tn). Assume that |Gn| → ∞.
Then s(Gn) → ∞ if and only if there is no subsequence of (Tn) of groups
over a field of fixed size which are either

� odd-dimensional orthogonal groups, or

� symplectic groups in even characteristic.
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Further Questions

� If the isolated vertices of Γ(G ) are removed then is Γ(G ) connected?

� Chromatic number, clique number, coclique number . . . ?

� When does Γ(G ) have a Hamiltonian cycle?

� When is G 6∼= H but Γ(G ) ∼= Γ(H)?
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Which groups are 3
2-generated?

Conjecture

For a finite group G , the following are equivalent.

� Every proper quotient of G is cyclic.

� s(G ) ≥ 1 (i.e. G is 3
2 -generated).

� s(G ) ≥ 2.

Combinatorial interpretation

Any generating graph either has an isolated vertex or is connected with
diameter two.
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