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The Generation Game

Let G be a finite group.
A subset X C G is a generating set of G if G = (X).

We say that G is d-generated if G has a generating set of size d.

Cyclic groups are 1-generated

Dihedral groups are 2-generated: Dy gon = (0, p | 0% = p" = 1,0p0 = p~ 1)

Alternating groups are 2-generated:
mifnisodd A, =((123),(12... n))

( )
[Symmetric groups are 2-generated: S, = ((12),(12 ... n)) ]
[ m if niseven A, =((123),(23 ... n)) ]
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It's simple . ..
How do you factorise a number a?
Repeatedly divide by big divisors
a/m=q, m/m=q, ..., n1/nx=qx,

and do this so that ¢y, ..., gx and ny are all prime.

(A number p is prime if p has exactly two divisors: 1 and p.)

How do you factorise a finite group G?

Repeatedly divide by big normal subgroups:
G/N1= @1, Ni/No=@Qa, ..., Ne_1/Ne=Qy,

and do this so that Q1,..., Qx and N, are all simple.

(A group S is simple if S has exactly two normal subgroups: 1 and S.)
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Example: The symmetry group of a triangle D

The subgroup of rotational symmetries C3 is normal in Da.

Then Da/C3 = G,. So the simple factors of Da are C3 and G,.

e/

ANl For a prime p, the cyclic group G, is simple.

Example: The symmetric group S, for n > 5

The subgroup of even permutations A, is normal in S,.

Then S,/A, = C,. So the simple factors of S, are A, and C,.

—

IS EMl For n > 5, the alternating group A, is simple.
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The Periodic Table Of Finite Simple Groups
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Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups
m 3 cyclic group of prime order
® an alternating group of degree at least 5

m a group of Lie type (e.g PSL,(q))

m one of the 26 sporadic simple groups.

Caveat mathematice

There are many ways of putting simple groups together.

m Both (5 x G, and (4 decompose into two copies of Co.
m All 49,487,365, 422 groups of order 1024 decompose into ten C.

Theorem (Steinberg, 1962)

Every finite simple group is 2-generated.




What are the chances?

If we arbitrarily select two or more substitutions of n elements,
it is to be regarded as extremely probable that the group of lowest
order which contains these is the symmetric group, or at least the
alternating group. | In the case of two substitutions the probability
in favor of the symmetric group may be taken as about 4, and in

favor of the alternating, but not symmetric, group as about .
In order that any given substitutions may generate a group which
is only a part of the n! possible substitutions, very special relations
are necessary, and it is highly improbable that arbitrarily chosen
*e ) should satisfy these conditions. The

M 2 [EORA Y S
substitutions s, = (.r;| x,. ..,

exception most likely to occur would be that all the given substitu-
tions were severally equivalent to an even number of transposi-

tions and would consequently generate the alternating group.

E. Netto, The theory of substitutions and its application to algebra,
Trans. F. N. Cole, Ann Arbor, Michigan, (1892)

Public Domain: http://www.hathitrust.org/access_use#pd
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Let P(G) be the probability that two random elements generate G.

e |{( ) | < > = }|
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Now we can formalise Netto's idea.
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Numerical evidence

n 5 6 7 8 9 10
P(A,) 0.633 0.588 0.726 0.738 0.848 0.875

GAP computations by N. Menezes, M. Quick and C. M. Roney-Dougal
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Cyclic groups of prime order

Let p be prime. Then

and so P(Cp) — 1 as p — oc.

Eighty years later . ..

Between 1965 and 1968, Paul Erdés and Pal Turdn published several
papers on random permutations and this was the birth of the field of
probabilistic group theory.

Using the work of Erdés and Turdn, Dixon proved Netto's conjecture.
Theorem (Dixon, 1969)

P(A;) = 1 as n— oo.
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Dixon replaced one conjecture with another even bolder one.

BRCURRENNEISINEN If G is simple then P(G) — 1 as |G| — oc. ]

As a result of the Classification, the following have been proved.

Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)

If G is simple then P(G) — 1 as |G| — oc.

Theorem (Menezes, Quick & Roney-Dougal, 2013)

If G is simple then P(G) > % with equality if and only if G = Ags.

Summary: It's easy to generate a finite simple group with two elements.



%—Generation



%—Generation

A group G is %—generated if every non-identity element of G is contained
in a generating pair.



%—Generation

A group G is %—generated if every non-identity element of G is contained
in a generating pair.

Theorem (Stein, 1998; Guralnick & Kantor, 2000)

Every finite simple group is %—generated.




%—Generation

A group G is %—generated if every non-identity element of G is contained
in a generating pair.

Theorem (Stein, 1998; Guralnick & Kantor, 2000)

Every finite simple group is %—generated.

Main Question

Which finite groups are %-generated?




%—Generation

A group G is %—generated if every non-identity element of G is contained
in a generating pair.

Theorem (Stein, 1998; Guralnick & Kantor, 2000)

Every finite simple group is %—generated.

Main Question

Which finite groups are %-generated?

Simple groups: Groups such that all proper quotients are trivial.



%—Generation

A group G is %—generated if every non-identity element of G is contained
in a generating pair.

Theorem (Stein, 1998; Guralnick & Kantor, 2000)

Every finite simple group is %—generated.

Main Question

Which finite groups are %-generated?

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?
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Proposition

If Gis %—generated then every proper quotient of G is cyclic.

Let 1 # N < G and fix 1 # n € N. Since G is %-generated, there exists
x € G such that (x,n) = G.

In particular, (xN, nN) = G/N. Since nN is trivial in G/N, in fact,
G/N = (xN). So G/N is cyclic. [ |

Conjecture (Breuer, Guralnick & Kantor, 2008)

A finite group is %—generated iff every proper quotient is cyclic.
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Generating Graphs
The generating graph of a group G is the graph ['(G) such that

m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.
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Generating Graphs

The generating graph of a group G is the graph ['(G) such that
m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.
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Spread

A group G has spread k if for any elements xy, ..., xk € G\ 1 there exists
an element z € G such that (xi,z) =--- = (xk, z) = G.

Write s(G) for the greatest integer k such that G has spread k.

Dihedral group D Alternating groups Az and As
. e e e
NS4 ° °
o o
[ 2 J
S(DD) =0 S(A4), S(A5) > 2
(D) has an isolated vertex I'(Az) and T(As) have diameter 2

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has (at least) spread two.
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Which groups are %—generated?

Main Conjecture

A finite group is %—generated iff every proper quotient is cyclic.

Need to show: For all finite groups G,

every proper quotient of G is cyclic = G is %—generated.

It suffices to show: For all finite almost simple groups G,

every proper quotient of G is cyclic = G is %—generated.

A group G is almost simple if T < G < Aut(T) for a simple group T.

Examples: G = S, (with T = A,); G = PGL,(q) (with T = PSL,(q)).
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Which groups are %—generated?

Main Conjecture

A finite group is %—generated iff every proper quotient is cyclic.

Strategy: Show (T, g) is %—generated for T simple and g € Aut(T).

Alternating groups Brenner & Wiegold, 1975 & 1980
Sporadic groups Breuer, Guralnick & Kantor, 2008

Groups of Lie type
PSL,(g): Burness & Guest, 2013
The rest: To be done!

Project: Show (T, g) has strong spread properties when T is of Lie type.
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Probabilistic Method

Let s € G. Write
_H{ze5% | (x,2) # G}

|5¢]

Suppose that for any element x € G of prime order P(x,s) < % Then G
has spread k.

(x,s8) # G = x lies in a maximal subgroup of G which contains s&

-1 . : .
= x% lies in a maximal subgroup of G which contains s

Let M(G, s) be the set of maximal subgroups of G which contain s.

G
P(x,s) < Z |70H’

x|
HeM(G,s)
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Proposition

The alternating group As has spread two.

Proof
Choose s € As and determine M(G, s)

Maximal subgroups of As
m 10 isomorphic to S3
m 5 isomorphic to As

® 6 isomorphic to D¢

Choose s = (12345).



“Things done without example, in their issue, are to be fear'd”

Proposition

The alternating group As has spread two.

Proof
Choose s € As and determine M(G, s)

Maximal subgroups of As
m 10 isomorphic to S3
m 5 isomorphic to As

® 6 isomorphic to D¢

Choose s = (12345).
Then M(As,s) = {H} where H = D¢,
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id® (123)°,(12)(34)¢,(12345)¢,(13524)¢

In this case

_ x6oH| _

x has order 2 |x®| =15 and [x® N H| =5 so P(x, s) = <]

x has order 3 |x® N H|=0
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Calculate P(x,s) for x € G of prime order
Conjugacy classes of G = As:

id® (123)°,(12)(34)¢,(12345)¢,(13524)¢

In this case

_ x6oH| _

x has order 2 |x®| =15 and [x® N H| =5 so P(x, s) = d

x has order 3 |x® N H| =0so P(x,s) = \ZG| =0.
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Calculate P(x,s) for x € G of prime order
Conjugacy classes of G = As:

id® (123)°,(12)(34)¢,(12345)¢,(13524)¢

In this case

_ x6oH| _

x has order 2 |x®| =15 and [x® N H| =5 so P(x, s) = <]

x has order 3 |x® N H| =0so P(x,s) = |X‘Zf;i"/| -0

X has order 5
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Calculate P(x,s) for x € G of prime order
Conjugacy classes of G = As:

id® (123)°,(12)(34)¢,(12345)¢,(13524)¢

In this case

_ x6oH| _

x has order 2 |x®| =15 and [x® N H| =5 so P(x, s) = <]

x has order 3 |x® N H| =0so P(x,s) = |X‘Zf;i"/| -0

x has order 5 |x¢| = 12
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Calculate P(x,s) for x € G of prime order
Conjugacy classes of G = As:

id® (123)°,(12)(34)¢,(12345)¢,(13524)¢

In this case

_ x6oH| _

x has order 2 |x®| =15 and [x® N H| =5 so P(x, s) = <]

x has order 3 |x® N H| =0so P(x,s) = |X‘Zf;i"/| -0

x has order 5 |x¢| =12 and |x® N H| =2
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Conjugacy classes of G = As:
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In this case

x has order 2 |x®| =15 and [x® N H| =5 so P(x, s) = |X|i2‘H| =

x has order 3 |x® N H| =0so P(x,s) = bentl — g,
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Calculate P(x, s) for x € G of prime order
Conjugacy classes of G = As:

id® (123)°,(12)(34)¢,(12345)¢,(13524)¢

In this case

x has order 2 |x®| =15 and [x® N H| =5 so P(x, s) = |X|i2‘H| =

x has order 3 |x® N H| =0so P(x,s) = bentl — g,

In all cases P(x,s) < 1. So s(As) > 2.

5 _

15

sl

W=

=
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Groups of Lie Type

There is a dichotomy: classical and exceptional.

Classical groups of Lie type
Linear PSL,(q)
Symplectic PSp,,,(q)
Orthogonal PQ2m+1(q) for odd g
PO, (a), P,0(q)
Unitary PSU,(q)

Exceptional groups of Lie type
Chevalley Ee(q), E7(q). Es(q), Fa(q), G2(q)
Steinberg 3D4(q), 2Es(q)

Suzuki and Ree 2B»(q), 2F4(q), 2G2(q)
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What is the simple group 77
Let g = p* be a prime power and let n € N. Write V = Fg-

Summary You take a natural subgroup of GL,(g) and then you quotient
by scalar matrices to make sure it is simple.

Symplectic Groups

Let n =2m and let f be a non-degenerate alternating bilinear form on V.
Define Sp,(q) = {A € GLn(q) | f(VvA, wA) = f(v, w) for all v,w € V}.
Then PSp,(q) = Spa(q)/Z(Spa(q)) where Z(Sp,(q)) = {/, —/}.

Odd-Dimensional Orthogonal Groups

Let n=2m+ 1 and let f be a non-deg. symmetric bilinear form on V.
Define Q,(q) = {A € GL,(q) | f(vA, wA) = f(v, w) for all v,w € V}.
Then PQ,(q) = Qn(q).
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What are the automorphisms of T7?

Field automorphisms ... These are typical.

Define o: T — T as (a;)0 = (ag-).

Graph-field automorphisms ... These are weird.

If g is even and T = PSp,(q), let p such that p? = o.

Diagonal automorphisms ... These are innocuous.

If g is odd, let 6 € PGL,(q) \ T be a diagonal matrix normalising T.

If T = PSp,,,(q) where g is even and 2m > 6 then Aut(T) = (T, o).
If T = PSp.(q) where q is even then Aut(T) = (T, p).

If T =PSp,,,(q) where g is odd then Aut(T) = (T,d,0).

If T=Qom+1(q) then Aut(T) = (T,0,0).
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Results on Spread

Write T = {PSpyp(q) | m > 2, q # 2} U{Q2m41(q) | m > 3}.
Theorem (H, 2017)
Let G =(T,g) where T € T and g € Aut(T). Then s(G) > 2.

Roughly, if Gi, Gy, Gs, ... is a sequence of finite simple groups such that
|Gi| — oo then s(G;) — oo unless (G;) has one of three types of “bad
subsequence” (Guralnick & Shalev, 2003).

Theorem (H, 2017)

Let G, = (Tp, gn) for T, € T and g, € Aut(T,). Assume that |G,| — co.
Then s(G,) — oo if and only if there is no subsequence of (T,) of groups
over a field of fixed size which are either

m odd-dimensional orthogonal groups, or

m symplectic groups in even characteristic.
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m |f the isolated vertices of [(G) are removed then is ['(G) connected?

m Chromatic number, clique number, coclique number ...?7
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m Chromatic number, clique number, coclique number ...?7
® When does ['(G) have a Hamiltonian cycle?
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Further Questions
m |f the isolated vertices of [(G) are removed then is ['(G) connected?
m Chromatic number, clique number, coclique number ...?7
® When does ['(G) have a Hamiltonian cycle?
® Whenis G 2 H but I'(G) = T(H)?
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Which groups are %—generated?

For a finite group G, the following are equivalent.

m Every proper quotient of G is cyclic.
= 5(G) >1 (i.e. Gis 3-generated).
= 5(G)>2.

Combinatorial interpretation

Any generating graph either has an isolated vertex or is connected with
diameter two.

7 S0,
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