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Generating Groups

Many familiar groups can be generated by two elements.

We say that G is d-generated if G has a generating set of size d.

Dihedral groups are 2-generated: Dn-gon = 〈σ, ρ | σ2 = ρn = 1,σρσ = ρ−1〉

Symmetric groups are 2-generated: Sn = 〈(1 2), (1 2 . . . n)〉

Alternating groups are 2-generated:
� if n is odd An = 〈(1 2 3), (1 2 . . . n)〉
� if n is even An = 〈(1 2 3), (2 3 . . . n)〉

Theorem

(CFSG, Steinberg, 1962)

Every �nite simple group is 2-generated.
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Probabilistic Generation

Write
P(G) =

|{(x, y) ∈ G× G | 〈x, y〉 = G}|
|G|2

Theorem (Dixon, 1969)
P(An)→ 1 as n→∞.

Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)
If G is simple then P(G)→ 1 as |G| → ∞.

Theorem (Menezes, Quick & Roney-Dougal, 2013)
If G is simple then P(G) ≥ 53

90 with equality if and only if G = A6.
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Generating Graphs
The generating graph of a group G is the graph Γ(G) such that

� the vertices are the non-identity elements of G;
� two vertices g and h are adjacent if and only if 〈g, h〉 = G.

Dihedral group D� Alternating group A4

σσρ

σρ2 σρ3

ρρ3

ρ2ρ2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)
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Alternating group A5



1. Isolated Vertices

Question When does Γ(G) have no isolated vertices?

Theorem (Guralnick & Kantor, 2000)
If G is a �nite simple group then Γ(G) has no isolated vertices.

A small diversion into the land of the in�nite ...

Tarksi Monsters

A group M is a Tarksi monster if M is in�nite but any proper subgroup of M
has order p, for a �xed prime p.

Any Tarksi monster is simple.

The generating graph of Tarksi monster has no isolated vertices.

There exist Tarksi monsters for all p > 1075 (Olshanksii, 1979).
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1. Isolated Vertices

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?

Proposition
If Γ(G) has no isolated vertices then every proper quotient of G is cyclic.

Proof

Let 1 6= N E G and �x 1 6= n ∈ N. Since the generating graph Γ(G) has no
isolated vertices, there exists x ∈ G such that 〈x, n〉 = G.

In particular, 〈xN, nN〉 = G/N. Since the element nN is trivial in G/N, in fact,
G/N = 〈xN〉. So G/N is cyclic. �

Conjecture (Breuer, Guralnick & Kantor, 2008)
For a �nite group G, the generating graph Γ(G) has no isolated vertices if and
only if every proper quotient of G is cyclic.
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generating pairs of A5 up to an automorphism.
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if k ≤ N(T)

|Aut(T)| where N(T) is the number of generating pairs of T.
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3. Spread

A group G has spread k if for any distinct x1, . . . , xk ∈ G \ 1 there exists an
element z ∈ G such that 〈x1, z〉 = · · · = 〈xk, z〉 = G.

Write s(G) for the greatest integer k such that G has spread k.

Alternating groups A4 and A5 Dihedral group D�

s(A4), s(A5) ≥ 2 s(D�) = 0

Theorem (Breuer, Guralnick & Kantor, 2008)
Every �nite simple group G has (at least) spread two.
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Sporadic Breuer, Guralnick & Kantor, 2008
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Classical Groups Refresher
Symplectic Groups

Let n = 2m and q = pk be a prime power. Write V = Fnq.
Let f be a non-degenerate alternating bilinear form on V.
De�ne Spn(q) = {A ∈ GLn(q) | f(vA,wA) = f(v,w) for all v,w ∈ V}.
Then PSpn(q) = Spn(q)/Z(Spn(q)) where Z(Spn(q)) = {I,−I}.

(For other classical groups change the form.)

Field automorphisms . . . These are typical.
De�ne σ : T → T as (aij)σ = (apij).

Graph-�eld automorphisms . . . These are extraordinary.
If q is even and T = PSp4(q), let ρ such that ρ2 = σ.

Diagonal automorphisms . . . These are innocuous.
If q is odd, let δ ∈ PGLn(q) \ T be a diagonal matrix normalising T.
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From Simple to Almost Simple

Automorphisms make a di�erence

Let q be even and consider Sp4(q).

Then s(Sp4(q)) ≤ q.

Let g be an order two graph-�eld automorphism of Sp4(q).

Then s(〈Sp4(8), g〉) ≥ 76. In general, s(〈Sp4(q), g〉) ≥ q2/18.

Key Tools

� Shintani descent from the theory of algebraic groups
� Aschbacher’s theorem on the maximal subgroups of classical groups
� Bounds on �xed point ratios for almost simple groups
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