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Generating Groups
Many familiar groups can be generated by two elements.
We say that G is d-generated if G has a generating set of size d.
Dihedral groups are 2-generated: Dpgon = (0, p | 02 = p" =1,0p0 = p~ ")
Symmetric groups are 2-generated: S, = ((12),(12 ... n))

Alternating groups are 2-generated:
m ifnisodd A, = ((123),(12 ... n))
m ifniseven A, = ((123),(23 ... n))

Theorem (CFSG, Steinberg, 1962)

Every finite simple group is 2-generated.
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Netto’s Conjecture

If we arbitrarily select two or more substitutions of 7 elements,
it is to be regarded as extremely probable that the group of lowest
order which contains these is the symmetric group, or at least the
alternating group. | In the case of two substitutions the probability
in favor of the symmetric group may be taken as about %, and in
favor of the alternating, but not symmetric, group as about %.
In order that any given substitutions may generate a group which
is only a part of the n! possible substitutions, very special relations
are necessary, and it is highly improbable that arbitrarily chosen

ey SRS AT g
substitutions s, = ( rl- 2.

o ) should satisfy these conditions. The

exception most likely to occur would be that all the given substitu-
tions were severally equivalent to an even number of transposi-

tions and would consequently generate the alternating group.

E. Netto, The theory of substitutions and its application to algebra,
Trans. F. N. Cole, Ann Arbor, Michigan, (1892)
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Write
o)~ L) €6 x|GG|2| (x.y) = 6}|

Theorem (Dixon, 1969)

P(An) — 1asn — oco.

Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)

If G is simple then P(G) — 1as |G| — oc.

Theorem (Menezes, Quick & Roney-Dougal, 2013)

If G is simple then P(G) > % with equality if and only if G = Ae.
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Generating Graphs

The generating graph of a group G is the graph I'(G) such that

m the vertices are the non-identity elements of G;

® two vertices g and h are adjacent if and only if (g, h) = G.
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Generating Graphs

The generating graph of a group G is the graph I'(G) such that
m the vertices are the non-identity elements of G;
® two vertices g and h are adjacent if and only if (g, h) = G.
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1. Isolated Vertices

When does I'(G) have no isolated vertices? ]

Theorem (Guralnick & Kantor, 2000)

If G is a finite simple group then '(G) has no isolated vertices.

A small diversion into the land of the infinite ...

Tarksi Monsters

A group M is a Tarksi monster if M is infinite but any proper subgroup of M
has order p, for a fixed prime p.

Any Tarksi monster is simple.
The generating graph of Tarksi monster has no isolated vertices.

There exist Tarksi monsters for all p > 107° (Olshanksii, 1979).
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1. Isolated Vertices
Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?

Proposition

If I'(G) has no isolated vertices then every proper quotient of G is cyclic.

Let 1 # N < G and fix 1 # n € N. Since the generating graph '(G) has no
isolated vertices, there exists x € G such that (x,n) = G.

In particular, (xN, nN) = G/N. Since the element nN is trivial in G/N, in fact,
G/N = (xN). So G/N is cyclic. [ |

J

Conjecture (Breuer, Guralnick & Kantor, 2008)

For a finite group G, the generating graph I'(G) has no isolated vertices if and
only if every proper quotient of G is cyclic.
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2. Hamiltonian Cycles

A Hamiltonian cycle in a graph is a cycle including each vertex exactly once.

Theorem (BGLMN, 2010)

Let G be a finite group. Then '(G) has a
Hamiltonian cycle if G is a

= sufficiently large simple group,
= sufficently large symmetric group,

= soluble group for which every proper
quotient is cyclic.

Conjecture (Breuer, Guralnick, Lucchini, Maroti & Nagy, 2010)

For a finite group G, the generating graph I'(G) has a Hamiltonian cycle if and
only if every proper quotient of G is cyclic.
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3. Spread

A group G has spread k if for any distinct xq, ..., Xz € G\ 1there exists an
elementz € G such that (x,2) = -+ = (X¢,2) = G.

Write s(G) for the greatest integer k such that G has spread k.

Alternating groups A, and As Dihedral group D
./.\. .'..,._". e— o
° ° Ta R xR o

S(A), s(As) > 2 s(Dn) =0

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group G has (at least) spread two.
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Main Conjecture

For a finite group G, the generating graph I'(G) has no isolated vertices if and
only if every proper quotient of G is cyclic.

Need to show: For all finite groups G,

every proper quotient of G is cyclic = T(G) has no isolated vertices.

It suffices to show: For all finite almost simple groups G,

every proper quotient of G is cyclic = I'(G) has no isolated vertices.

A group G is almost simple if T < G < Aut(T) for a simple group T.

DENIE G = S, (with T =A,); G = PGL,(q) (with T = PSL,(q)). ]
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Main Conjecture

For a finite group G, the generating graph I'(G) has no isolated vertices if and
only if every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show I'((T, g)) has no isolated vertices.
Alternating Piccard, 1939

Classical
Linear Burness & Guest, 2013
Symplectic Orthogonal Unitary

Exceptional

Sporadic Breuer, Guralnick & Kantor, 2008
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Isolated Vertices

Let T be a simple group of Lie type and let g € Aut(T).

Aim: Show that I'((T, g)) has no isolated vertices.

Theorem (H, 2017)

Write G = (T, g) where T = PSp,,,(q) or T = Q,m11(q) and g € Aut(T).
Then I'(G) has no isolated vertices.
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Let n = 2m and g = p® be a prime power. Write V = [Fg-

Let f be a non-degenerate alternating bilinear form on V.

Define Sp,(q) = {A € GLn(q) | f(vA, wA) = f(v,w) forallv,w € V}.
Then PSp,(q) = Spa(a)/2(Spy(q)) where 2(Sp,(q)) = {1, ~1}.

(For other classical groups change the form.)

Field automorphisms ...These are typical.
Define o: T — T as (aj)0 = (ap).
Graph-field automorphisms ...These are extraordinary.

If g is even and T = PSp,(q), let p such that p? = o.

Diagonal automorphisms ...These are innocuous.

If g is odd, let § € PGL,(q) \ T be a diagonal matrix normalising T.
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Write G = (T, g) where T = PSp,,,(q) or T = Q,m11(q) and g € Aut(T).
Then I'(G) has no isolated vertices.

Wider aim: Show that (T, g) has strong spread properties.

Theorem (H, 2017)

Write G = (T, g) where T = PSp,,(q) or T = Qum41(q) and g € Aut(T).
Then s(G) > 2.
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From Simple to Almost Simple

Automorphisms make a difference

Let g be even and consider Sp,(q).

Then s(Sp,(q)) < g.

Let g be an order two graph-field automorphism of Sp,(q).
Then s((Sp,(8), g)) > 76. In general, s({Sp,(q), g)) > ¢*/18.

Key Tools
m Shintani descent from the theory of algebraic groups
m Aschbacher’s theorem on the maximal subgroups of classical groups
®m Bounds on fixed point ratios for almost simple groups
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