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Theorem (Steinberg, 1962)
Every finite simple group is generated by two elements.

Let P(G) be the probability that a pair of elements of G generate G.

e/

Netto’s Conjecture (1882) NP R SRR NeeH

Theorem (Liebeck & Shalev, 1995)
If G is a finite simple group, then P(G) — 1 as |G| — oc.

Summary: Finite simple groups have many generating pairs.

Question: How are these generating pairs distributed across the group?
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A group G is g-generated if every non-identity element of G is contained in
a generating pair.

Theorem (Guralnick & Kantor, 2000)

Every finite simple group is %—generated.

Main Question

Which finite groups are %—generated?

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?
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Need to show: For all finite groups G,

every proper quotient of G is cyclic = Gis %—generated.

It suffices to show: For all finite almost simple groups G,

every proper quotient of G is cyclic = Gis %—generated.

G is almost simple if T < G < Aut(T) for a non-abelian simple group T.

FEUINC G = S, (with T=A,); G = PGLa(q) (with T = PSLy(q)). )




Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.

Alternating



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating

Classical



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating

Classical

Exceptional



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating

Classical

Exceptional

Sporadic



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating Piccard, 1939

Classical

Exceptional

Sporadic



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating Piccard, 1939

Classical

Exceptional

Sporadic Breuer, Guralnick & Kantor, 2008



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating Piccard, 1939

Classical

Linear

Exceptional

Sporadic Breuer, Guralnick & Kantor, 2008



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating Piccard, 1939

Classical
Linear

Symplectic
Exceptional

Sporadic Breuer, Guralnick & Kantor, 2008



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating Piccard, 1939

Classical
Linear

Symplectic  Orthogonal
Exceptional

Sporadic Breuer, Guralnick & Kantor, 2008



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating Piccard, 1939

Classical
Linear

Symplectic Orthogonal Unitary
Exceptional

Sporadic Breuer, Guralnick & Kantor, 2008



Gis %—generated <= every proper quotient of G is cyclic.

Aim: For simple T and g € Aut(T), show that G = (T, g) is 3-generated.
Alternating Piccard, 1939

Classical
Linear Burness & Guest, 2013
Symplectic Orthogonal Unitary

Exceptional

Sporadic Breuer, Guralnick & Kantor, 2008
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Theorem (H, 2017)
If T = PSp,,(q) or T = Qumy1(q) and g € Aut(T), then s((T, g)) > 2.
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Theorem (Guralnick & Shalev, 2003)

Let G, be a finite simple classical group. Assume that |G,| — oo.
Then s(G,) — oo if and only if there is no subsequence of (Gy) of
m odd-dimensional orthogonal groups over a field of fixed size, or
m symplectic groups in even characteristic over a field of fixed size.

Theorem (H, 2017)

Let G, = (Tn, gn) Where T, € {PSp,(q), 2m+1(q)} and g, € Aut(T,).
Assume that |G| — oo. Then s(Gp) — oo if and only if (T,) does not have a
sequence as above.




Probabilistic Method

Let s € G. Write

_ Hzes® | x.2) # 6}

P(x,s) = %]



Probabilistic Method

Let s € G. Write G
S G
P(X,S) — ‘{Z € ‘|S<();|' Z> 7é }|

If for any element x € G of prime order P(x,s) < 3, then s(G) > k.




Probabilistic Method

Let s € G. Write G
S G
P(X,S) — ‘{Z € ‘|S<();|' Z> 7é }|

If for any element x € G of prime order P(x,s) < 3, then s(G) > k.

(x.s%) #6



Probabilistic Method

Let s € G. Write
z€s%| (x,z #*G
P(X,S) — ‘{ ‘|S<G| > }|

If for any element x € G of prime order P(x,s) < 3, then s(G) > k.

(x,s%) # G = x lies in a maximal subgroup of G which contains s?



Probabilistic Method

Let s € G. Write
z€s%| (x,z #*G
P(X, S) ‘{ ‘|S<G| > }|

If for any element x € G of prime order P(x,s) < 3, then s(G) > k.

(x,s%) # G = x lies in a maximal subgroup of G which contains s?

— x9 ' lies in a maximal subgroup of G which contains s



Probabilistic Method

Let s € G. Write G
S G
P(X,S) — ‘{Z € ‘|S<();|' Z> 7é }|

If for any element x € G of prime order P(x,s) < 3, then s(G) > k.

(x,s%) # G = x lies in a maximal subgroup of G which contains s?

— x9 ' lies in a maximal subgroup of G which contains s

Let M(G, s) be the set of maximal subgroups of G which contain s.



Probabilistic Method

Let s € G. Write G
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If for any element x € G of prime order P(x,s) < 3, then s(G) > k.

(x,s%) # G = x lies in a maximal subgroup of G which contains s?

— x9 ' lies in a maximal subgroup of G which contains s

Let M(G, s) be the set of maximal subgroups of G which contain s.

X6 N H|
P(x,s) < Z W
HEM(G,s)
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Proof Idea

Let T = Sp,(q) where g = 2° with e > 1and where n = 2 (mod 4).
Then Aut(T) = (T, o) = T:(o) where o: (a;) — (af).
Let G = Aut(T).

Choose an elements € G

Observation 1: s ¢ Sp,(q)

This is a significant difference from the case when G is simple.

Observation 2: s € Sp,(q)

A central idea of the method: choose s such that we understand s€.

Question: Which elements in Sp,,(q) arise as s€ for some s ¢ Sp,,(q)?
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Let o: X — X be a Frobenius morphism. Example: o: (aj) — (a,?j)
Write X, be the subgroup of X fixed by o. Example: X, = Sp,(2)
Write X, be the subgroup of X fixed by o®. Example: X,e = Sp,(q)

Shintani Descent
There is a bijection (with other nice properties)

f: Xge-classes of X,eda —— X,-classes of X,

such that f(g) is X-conjugate to g°.

Application For all x € Sp,(2) < Sp,(q) there exists s € Sp,(q)o such
that s is Sp,(FF,)-conjugate to x.
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Choose s € Sp,(g)o such that s¢ has the form

(Fts) € spt@

where A; and A, act irreducibly on non-degenerate 2- and (n — 2)-spaces.

Determine the maximal subgroups in M(G, s)

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal subgroup
of G which does not contain T belongs to one of

m Cq,...,Cg(afamily of geometric subgroups)
m S (the family of almost simple irreducible subgroups).

Key Features Only two subspaces are stabilised by s€.
A power of s¢ has an (n — 2)-dimensional 1-eigenspace.
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Calculate P(x, s) for x € G of prime order

Recall that

X6 N H
P(x,s) < Z P
HEM(G,S)

The quantity |X|GXQ|H| is the fixed point ratio of the action of G on the G/H.

Fixed point ratios find applications to generation problems, base sizes,
finite geometry, monodromy groups ...

Theorem (Burness, 2007)

Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x € G have prime order. Then

X6 N H| < |x6)°

for e ~ 2, provided that H does not stabilise a subspace.

1
2
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Summary

A finite group is %—generated iff every proper quotient is cyclic.

Theorem (H, 2017)
If T = PSp,,,(q) or T = Qm1(q) and g € Aut(T), then s((T, g)) > 2.

Asymptotic Results: We apply a similar probabilistic approach.

Current work: Prove similar results on the spread of the remaining almost
simple groups of Lie type.

Question: Are there any finite groups with spread one but not two?



