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Generating Finite Simple Groups

Theorem (Steinberg, 1962)
Every �nite simple group is generated by two elements.

Let P(G) be the probability that a pair of elements of G generate G.

Conjecture (Netto, 1882)
P(An)→ 1 as n→∞.

Theorem (Liebeck & Shalev, 1995)
If G is a �nite simple group, then P(G)→ 1 as |G| → ∞.

Question: How are the generating pairs distributed across the group?
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The Uniform Domination Number

Let G be a �nite simple group.

Theorem (Guralnick & Kantor, 2000)

(a) For each 1 6= x ∈ G, there exists y ∈ G such that 〈x, y〉 = G.

(b) There exists a conjugacy class C such that for each 1 6= x ∈ G there
exists y ∈ C such that 〈x, y〉 = G.

Remark: Typically the conjugacy class in (b) is large, such as a class of
regular semisimple elements in a group of Lie type.

The uniform domination number of G is the minimal size of a set S of
conjugate elements of G such that for each non-identity element x ∈ G
there exists s ∈ S such that 〈x, s〉 = G.



The Uniform Domination Number

Let G be a �nite simple group.

Theorem (Guralnick & Kantor, 2000)

(a) For each 1 6= x ∈ G, there exists y ∈ G such that 〈x, y〉 = G.

(b) There exists a conjugacy class C such that for each 1 6= x ∈ G there
exists y ∈ C such that 〈x, y〉 = G.

Remark: Typically the conjugacy class in (b) is large, such as a class of
regular semisimple elements in a group of Lie type.

The uniform domination number of G is the minimal size of a set S of
conjugate elements of G such that for each non-identity element x ∈ G
there exists s ∈ S such that 〈x, s〉 = G.



The Uniform Domination Number

Let G be a �nite simple group.

Theorem (Guralnick & Kantor, 2000)

(a) For each 1 6= x ∈ G, there exists y ∈ G such that 〈x, y〉 = G.

(b) There exists a conjugacy class C such that for each 1 6= x ∈ G there
exists y ∈ C such that 〈x, y〉 = G.

Remark: Typically the conjugacy class in (b) is large, such as a class of
regular semisimple elements in a group of Lie type.

The uniform domination number of G is the minimal size of a set S of
conjugate elements of G such that for each non-identity element x ∈ G
there exists s ∈ S such that 〈x, s〉 = G.



The Uniform Domination Number

Let G be a �nite simple group.

Theorem (Guralnick & Kantor, 2000)

(a) For each 1 6= x ∈ G, there exists y ∈ G such that 〈x, y〉 = G.

(b) There exists a conjugacy class C such that for each 1 6= x ∈ G there
exists y ∈ C such that 〈x, y〉 = G.

Remark: Typically the conjugacy class in (b) is large, such as a class of
regular semisimple elements in a group of Lie type.

The uniform domination number of G is the minimal size of a set S of
conjugate elements of G such that for each non-identity element x ∈ G
there exists s ∈ S such that 〈x, s〉 = G.



The Uniform Domination Number

Let G be a �nite simple group.

Theorem (Guralnick & Kantor, 2000)

(a) For each 1 6= x ∈ G, there exists y ∈ G such that 〈x, y〉 = G.

(b) There exists a conjugacy class C such that for each 1 6= x ∈ G there
exists y ∈ C such that 〈x, y〉 = G.

Remark: Typically the conjugacy class in (b) is large, such as a class of
regular semisimple elements in a group of Lie type.

The uniform domination number of G is the minimal size of a set S of
conjugate elements of G such that for each non-identity element x ∈ G
there exists s ∈ S such that 〈x, s〉 = G.



The Uniform Domination Number

Let G be a �nite simple group.

Theorem (Guralnick & Kantor, 2000)

(a) For each 1 6= x ∈ G, there exists y ∈ G such that 〈x, y〉 = G.

(b) There exists a conjugacy class C such that for each 1 6= x ∈ G there
exists y ∈ C such that 〈x, y〉 = G.

Remark: Typically the conjugacy class in (b) is large, such as a class of
regular semisimple elements in a group of Lie type.

The uniform domination number of G is the minimal size of a set S of
conjugate elements of G such that for each non-identity element x ∈ G
there exists s ∈ S such that 〈x, s〉 = G.



The Generating Graph
The generating graph of a group G is the graph Γ(G) such that

� the vertices are the non-identity elements of G
� two vertices g and h are adjacent if and only if 〈g, h〉 = G.
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Alternating group A5



Total Domination
A total dominating set of a graph Γ is a set S of vertices such that every
vertex of Γ is a adjacent to a vertex in S.

The total domination number γt(Γ) of Γ is the minimal size of a TDS of Γ.

Example: Alternating Group A4

{(1 2 3), (2 4 3)} is a TDS of Γ(A4)

=⇒ γt(Γ(A4)) = 2

{(1 2 3), (2 4 3)} is a UDS of A4
=⇒ γu(A4) = 2

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)
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(2 3 4)

A uniform dominating set of G is a TDS of Γ(G) of conjugate elements.

The uniformdomination number γu(G) of G is theminimal size of a UDS of G.
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Main Problem

Summary
Let G be a non-abelian �nite simple group. Then

2 6 γt(G) 6 γu(G) 6 |C|

where C is a particular conjugacy class of G.

Aim Find tight bounds on γu(G).

By the Classi�cation of Finite Simple Groups we need to consider
� alternating groups (A5, A6, A7, . . . )
� classical groups (e.g. PSLn(q), PΩ−2m(q), . . . )
� exceptional groups (e.g. E8(q), 2B2(q), . . . )
� sporadic groups (e.g. M24,M, . . . )
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Digression? Bases

Let G act faithfully on a set Ω.

A base for the action of G on Ω is a subset B ⊆ Ω for which the pointwise
stabiliser G(B) is trivial.

Write b(G, Ω) for the minimal size of a base for G on Ω.

Theorem (Burness et al., 2011)
Let G be an almost simple group with a primitive non-standard action on Ω.
Then b(G, Ω) 6 7 with equality i� G = M24 and |Ω| = 24.

The standard actions are roughly classical groups acting on subspaces or
alternating/symmetric groups acting on subsets or partitions.

Observation: If H 6 G is core-free, then G acts faithfully on G/H and
{Hg1, . . . ,Hgc} is a base i�

⋂c
i=1 H

gi = 1.
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Method: Probabilistic Approach

For s ∈ G and c ∈ N, write Q(G, s, c) for the probability that a random
c-tuple of conjugates of s do not form a total dominating set for G.

Idea: Prove γu(G) 6 c by showing Q(G, s, c) < 1 for some s.

If G acts on Ω, then the �xed point ratio of x ∈ G is fpr(x, Ω) = �x(x,Ω)
|Ω| .

Let x1, . . . , xk be prime order conjugacy classes representatives in G.

“Probabilistic Lemma”

Q(G, s, c) 6
k∑
i=1

|xGi |

 ∑
H∈M(G,s)

fpr(xi,G/H)

c

IfM(G, s) = {H}, then the Probabilistic Lemma is the probabilistic
approach introduced by Liebeck and Shalev for base sizes.
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Example: Classical Groups

Theorem (Burness & H, 2017)
Let G = PSLr+1(q) for r > 8 even. Then γu(G) 6 2r + 26.

Proof

Let s lift to
(
A

B

)
for irreducible A ∈ SLr/2(q) and B ∈ SL(r+2)/2(q).

ThenM(G, s) = {H1,H2} where H1 and H2 are stabilisers of subspaces of
dimensions r/2 and (r + 2)/2.

Q(G, s, 2r + 26) 6
k∑
i=1

|xGi |

 ∑
H∈M(G,s)

fpr(xi,G/H)

2r+26

6 |G| · (fpr(x,G/H1) + fpr(x,G/H2))2r+26

< qr
2+2r ·

(
4q−r/2

)2r+26
6 q−4 < 1

By the Probabilistic Lemma, γu(G) 6 2r + 26. �
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Main Result

Theorem (Burness & H, 2017)

Let G be a non-abelian �nite simple group.

� If G is an alternating group, then γu(An) 6 c(log2n).
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