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Generating Finite Simple Groups

Theorem (Steinberg, 1962)

Every finite simple group is generated by two elements.

Let P(G) be the probability that a pair of elements of G generate G.

Conjecture (Netto, 1882)

P(A;) — 1asn — oo.

Theorem (Liebeck & Shalev, 1995)
If G is a finite simple group, then P(G) — 1as |G| — oc.

Question: How are the generating pairs distributed across the group?
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The Uniform Domination Number

Let G be a finite simple group.

Theorem (Guralnick & Kantor, 2000)

(a) Foreach 1= x € G, there exists y € G such that (x,y) = G.

(b) There exists a conjugacy class C such that for each 1 # x € G there
exists y € Csuch that (x,y) = G.

Remark: Typically the conjugacy class in (b) is large, such as a class of
regular semisimple elements in a group of Lie type.

The uniform domination number of G is the minimal size of a set S of
conjugate elements of G such that for each non-identity elementx € G
there exists s € S such that (x,s) = G.
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The Generating Graph

The generating graph of a group G is the graph I'(G) such that

m the vertices are the non-identity elements of G

® two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg
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A total dominating set of a graph I' is a set S of vertices such that every
vertex of I' is a adjacent to a vertex in S.

The total domination number ~;(I') of I" is the minimal size of a TDS of I'.

Example: Alternating Group A,

{(123),(243)} isaTDS of [(A,)
= 1(M(As)) =2

{(123),(243)} is a UDS of A,
- ")/u(A4) =2

A uniform dominating set of G is a TDS of '(G) of conjugate elements.

The uniform domination number +,(G) of G is the minimal size of a UDS of G.
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Main Problem

Let G be a non-abelian finite simple group. Then

2 < %(G) < v(6) < |C|

where C is a particular conjugacy class of G.

)full Find tight bounds on 7,(G). ]

By the Classification of Finite Simple Groups we need to consider
® alternating groups (As, Ag, A7, .. .)
= classical groups (e.g. PSLn(q), PQ,,,(q), - - .)
= exceptional groups (e.g. Es(q),%Bx(q), .. .)
m sporadic groups (e.g. My, IM, . . .)
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Digression? Bases

Let G act faithfully on a set Q.

A base for the action of G on Q is a subset B C Q for which the pointwise
stabiliser G(g) is trivial.

Write b(G, ©2) for the minimal size of a base for G on Q.

Theorem (Burness et al., 2011)

Let G be an almost simple group with a primitive non-standard action on .
Then b(G, Q) < 7 with equality iff G = My, and |Q| = 24.

The standard actions are roughly classical groups acting on subspaces or
alternating/symmetric groups acting on subsets or partitions.

Observation: If H < G is core-free, then G acts faithfully on G/H and
{Hgn, ..., Hgc} is a base iff _, H% = 1.
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Method: Base Sizes

Write M (G, s) for the set of maximal subgroups of G which contain s € G.

“Bases Lemma”

If M(G,s) ={H} and H < G is core-free, then

{s9,...,s9}
is a TDS for G

{Hgn, ..., Hg.}

C
<= HI =1 <— .
ﬂ is a base for G/H

i=1
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Example: Exceptional Groups

Theorem (Burness & H, 2017)

Let G be an exceptional group of Lie type. Then ,(G) < 6.

Write & = {F4(2), G2(3), Gy (4), 2F4(2)'}.
ProofforG & £

Let G be an exceptional group and assume G ¢ £.

WEENGEERN There exists s € G such that M(G, s) = {H}. ]

Theorem (Burness et al., 2011)

Let G be an almost simple group with a primitive non-standard action on €.
Then b(G, Q) < 7 with equality iff G = My, and |Q| = 24.

Therefore, b(G, G/H) < 6, so by the Bases Lemma 7,(G) < 6. [ |
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Method: Probabilistic Approach

Fors € G and c € IN, write Q(G, s, c) for the probability that a random
c-tuple of conjugates of s do not form a total dominating set for G.

Idea: Prove ~,(G) < c by showing Q(G, s, ¢) < 1for somes.

If G acts on €, then the fixed point ratio of x € G is fpr(x, Q) = ﬁxfg‘z"m
Let xq,..., X, be prime order conjugacy classes representatives in G.

“Probabilistic Lemma”

k

aG.s,0) <> X1 D fpr(x, G/H)

i=1 HeM(G,s)

If M(G, s) = {H}, then the Probabilistic Lemma is the probabilistic
approach introduced by Liebeck and Shalev for base sizes.
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Theorem (Burness & H, 2017)
Let G = PSL,41(q) for r > 8 even. Then v,(G) < 2r + 26.

Proof

Let s lift to ( A B ) for irreducible A € SL, ,(q) and B € SL(,1,)/2(9)

Then M(G, s) = {Hs, H,} where Hy and H, are stabilisers of subspaces of
dimensions r/2 and (r +2)/2.

K 2r4-26
QG s,2r+26) <> X[ [ Y fpr(xi, 6/H)
i=1 HeM(G,s)

< |G| - (fpr(x, G/Hq) + fpr(x, G/H,))*+%

< C’r2+2r‘ (4qfr/2)2r+26 < q74 <1

By the Probabilistic Lemma, 7,(G) < 2r + 26. [ |
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Main Result

Theorem (Burness & H, 2017)
Let G be a non-abelian finite simple group.
= If G is an alternating group, then 7,(An) < c(log,n).
—If n > 6 is even, then [log,n] — 1 < v,(As) < 2[log,n].
— If n > 13 is prime, then ~,(A,) = 2.
= If G is classical group of rank r, then ~,(G) < 7r + 56.
— If G = Q,41(q) with g odd, then r < ~,(G) < 7r.
— If G = PSU,41(q) with r > 7 odd, then 7,(G) < 15.

= If G is an exceptional group, then ~,(G) < 6.

= If G is a sporadic group, then 7,(G) < 4.




