The Distinguishing Number of Semiprimitive Groups

> Scott Harper University of Bristol

Symmetry Breaking in Discrete Structures Casa Matemática, Oaxaca 20th September 2018 Joint with Alice Devillers and Luke Morgan (University of Western Australia)

Background

The **distinguishing number** of *G*, written D(G), is the least $k \ge 1$ for which there exists a partition Π of Ω into *k* parts such that

$$G_{(\Pi)} = \bigcap_{\pi \in \Pi} G_{\pi} = 1.$$

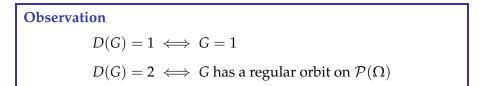
The **distinguishing number** of *G*, written D(G), is the least $k \ge 1$ for which there exists a partition Π of Ω into *k* parts such that

$$G_{(\Pi)} = \bigcap_{\pi \in \Pi} G_{\pi} = 1.$$

Observation $D(G) = 1 \iff G = 1$

The **distinguishing number** of *G*, written D(G), is the least $k \ge 1$ for which there exists a partition Π of Ω into *k* parts such that

$$G_{(\Pi)} = \bigcap_{\pi \in \Pi} G_{\pi} = 1.$$



The **distinguishing number** of *G*, written D(G), is the least $k \ge 1$ for which there exists a partition Π of Ω into *k* parts such that

$$G_{(\Pi)} = \bigcap_{\pi \in \Pi} G_{\pi} = 1.$$

Observation $D(G) = 1 \iff G = 1$ $D(G) = 2 \iff G$ has a regular orbit on $\mathcal{P}(\Omega)$

Question When is D(G) = 2?

The distinguishing number of a graph Γ is the distinguishing number of its automorphism group Aut(Γ) acting on its vertex set Ω .

The distinguishing number of a graph Γ is the distinguishing number of its automorphism group Aut(Γ) acting on its vertex set Ω .

Some permutation groups never arise in this context, e.g. $Sym(\Omega)$ is the only 2-transitive group which arises.

The distinguishing number of a graph Γ is the distinguishing number of its automorphism group Aut(Γ) acting on its vertex set Ω .

Some permutation groups never arise in this context, e.g. $Sym(\Omega)$ is the only 2-transitive group which arises.

Example 2. Vector spaces

Let *F* be a field and let $d \ge 2$. Let *G* be the group $GL_d(F)$ acting on the set Ω of nonzero vectors of F^d . What is D(G)?

The distinguishing number of a graph Γ is the distinguishing number of its automorphism group Aut(Γ) acting on its vertex set Ω .

Some permutation groups never arise in this context, e.g. $Sym(\Omega)$ is the only 2-transitive group which arises.

Example 2. Vector spaces

Let *F* be a field and let $d \ge 2$. Let *G* be the group $GL_d(F)$ acting on the set Ω of nonzero vectors of F^d . What is D(G)?

Example 3. Simple groups

Let $G \leq \text{Sym}(\Omega)$ be a simple group. What is D(G)?

The distinguishing number of a graph Γ is the distinguishing number of its automorphism group Aut(Γ) acting on its vertex set Ω .

Some permutation groups never arise in this context, e.g. $Sym(\Omega)$ is the only 2-transitive group which arises.

Example 2. Vector spaces

Let *F* be a field and let $d \ge 2$. Let *G* be the group $GL_d(F)$ acting on the set Ω of nonzero vectors of F^d . What is D(G)?

Example 3. Simple groups

Let $G \leq \text{Sym}(\Omega)$ be a simple group. What is D(G)?

Example 4. Primitive groups

Let $G \leq \text{Sym}(\Omega)$ be a primitive permutation group. What is D(G)?

Theorem (Cameron, Neumann, Saxl '84; Seress '97; Dolfi '00)

Theorem (Cameron, Neumann, Saxl '84; Seress '97; Dolfi '00) Let $G \leq \text{Sym}(\Omega)$ be primitive. Then one of the following holds. **Theorem** (Cameron, Neumann, Saxl '84; Seress '97; Dolfi '00) Let $G \leq \text{Sym}(\Omega)$ be primitive. Then one of the following holds. (i) $G = \text{Sym}(\Omega)$ and D(G) = n **Theorem** (Cameron, Neumann, Saxl '84; Seress '97; Dolfi '00) Let $G \leq \text{Sym}(\Omega)$ be primitive. Then one of the following holds. (i) $G = \text{Sym}(\Omega)$ and D(G) = n(ii) $G = \text{Alt}(\Omega)$ and D(G) = n - 1

•
$$G = AGL_5(2) = 2^5: GL_5(2) \text{ on } \mathbb{F}_2^5 \text{ with } D(G) = 3$$

- $G = AGL_5(2) = 2^5: GL_5(2) \text{ on } \mathbb{F}_2^5 \text{ with } D(G) = 3$
- G = Sym(5) on the vertices of the Petersen graph with D(G) = 3

- $G = AGL_5(2) = 2^5: GL_5(2) \text{ on } \mathbb{F}_2^5 \text{ with } D(G) = 3$
- G = Sym(5) on the vertices of the Petersen graph with D(G) = 3
- $G = M_{11}$ on 11 points with D(G) = 4

 ${\cal P}$ is a set of 43 permutation groups of degree at most 32

- $G = AGL_5(2) = 2^5: GL_5(2) \text{ on } \mathbb{F}_2^5 \text{ with } D(G) = 3$
- G = Sym(5) on the vertices of the Petersen graph with D(G) = 3
- $G = M_{11}$ on 11 points with D(G) = 4

Question Can we extend this result to a wider class of groups?

$$G_{(B)} = \bigcap_{b \in B} G_b = 1.$$

$$G_{(B)} = \bigcap_{b \in B} G_b = 1.$$

Examples

1.
$$b(\text{Sym}(n)) = n - 1$$
 & $b(\text{Alt}(n)) = n - 2$

$$G_{(B)} = \bigcap_{b \in B} G_b = 1.$$

Examples

1.
$$b(\text{Sym}(n)) = n - 1$$
 & $b(\text{Alt}(n)) = n - 2$

2. $b(GL_d(F)) = d$

$$G_{(B)} = \bigcap_{b \in B} G_b = 1.$$

Examples

- **1.** b(Sym(n)) = n 1 & b(Alt(n)) = n 2
- **2.** $b(GL_d(F)) = d$
- **3.** $b(G) = \lfloor \frac{2}{3}(m-1) \rfloor$ if *G* is Sym(*m*) on the 2-subsets of $\{1, ..., m\}$

$$G_{(B)} = \bigcap_{b \in B} G_b = 1.$$

Examples

1.
$$b(\text{Sym}(n)) = n - 1$$
 & $b(\text{Alt}(n)) = n - 2$

2.
$$b(GL_d(F)) = d$$

3. $b(G) = \lfloor \frac{2}{3}(m-1) \rfloor$ if *G* is Sym(*m*) on the 2-subsets of $\{1, ..., m\}$

$$G_{(B)} = \bigcap_{b \in B} G_b = 1.$$

Examples

1.
$$b(\text{Sym}(n)) = n - 1$$
 & $b(\text{Alt}(n)) = n - 2$

2.
$$b(GL_d(F)) = d$$

3. $b(G) = \lfloor \frac{2}{3}(m-1) \rfloor$ if *G* is Sym(m) on the 2-subsets of $\{1, \ldots, m\}$

$$G_{(B)} = \bigcap_{b \in B} G_b = 1.$$

Examples

1.
$$b(\text{Sym}(n)) = n - 1$$
 & $b(\text{Alt}(n)) = n - 2$

$$2. b(\operatorname{GL}_d(F)) = d$$

3. $b(G) = \lfloor \frac{2}{3}(m-1) \rfloor$ if *G* is Sym(m) on the 2-subsets of $\{1, \ldots, m\}$

Observation $D(G) \leq b(G) + 1$

 $\log_n |G| \leq b(G) \leq 2\log_n |G| + 24$

$$\log_n |G| \le b(G) \le 2\log_n |G| + 24$$

Example

Let G = Sym(m) on 2-subsets of $\{1, \dots, m\}$. Then $b(G) = \lceil \frac{2}{3}(m-1) \rceil$.

$$\log_n |G| \le b(G) \le 2\log_n |G| + 24$$

Example

Let G = Sym(m) on 2-subsets of $\{1, \ldots, m\}$. Then $b(G) = \lceil \frac{2}{3}(m-1) \rceil$. (Note: $|G| \approx m^m$ and $n \approx m^2$)

$$\log_n |G| \le b(G) \le 2\log_n |G| + 24$$

Example

Let G = Sym(m) on 2-subsets of $\{1, \ldots, m\}$. Then $b(G) = \lceil \frac{2}{3}(m-1) \rceil$. (Note: $|G| \approx m^m$ and $n \approx m^2$)

Theorem (Duyan, Halasi, Maróti '18) Let $G \leq \text{Sym}(n)$ be transitive. Then

 $|G|^{\frac{1}{n}} \leqslant D(G) \leqslant 48 \, |G|^{\frac{1}{n}}$

Theorem (Halasi, Liebeck, Maróti '18) Let $G \leq \text{Sym}(n)$ be primitive. Then

$$\log_n |G| \le b(G) \le 2\log_n |G| + 24$$

Example

Let G = Sym(m) on 2-subsets of $\{1, \dots, m\}$. Then $b(G) = \lceil \frac{2}{3}(m-1) \rceil$. (Note: $|G| \approx m^m$ and $n \approx m^2$)

Theorem (Duyan, Halasi, Maróti '18) Let $G \leq \text{Sym}(n)$ be transitive. Then

 $|G|^{\frac{1}{n}} \leqslant D(G) \leqslant 48 \, |G|^{\frac{1}{n}}$

Example

Let $G = \text{Sym}(m) \wr \text{Sym}(m)$ on $\{1, \dots, m\}^2$. Then D(G) = m + 1.

Theorem (Halasi, Liebeck, Maróti '18) Let $G \leq \text{Sym}(n)$ be primitive. Then

$$\log_n |G| \le b(G) \le 2\log_n |G| + 24$$

Example

Let G = Sym(m) on 2-subsets of $\{1, \dots, m\}$. Then $b(G) = \lceil \frac{2}{3}(m-1) \rceil$. (Note: $|G| \approx m^m$ and $n \approx m^2$)

Theorem (Duyan, Halasi, Maróti '18) Let $G \leq \text{Sym}(n)$ be transitive. Then

 $|G|^{\frac{1}{n}} \leqslant D(G) \leqslant 48 \, |G|^{\frac{1}{n}}$

Example

Let $G = \text{Sym}(m) \wr \text{Sym}(m)$ on $\{1, \dots, m\}^2$. Then D(G) = m + 1. (Note: $|G| \approx m^{m^2}$ and $n \approx m^2$)

Results

A permutation group $G \leq \text{Sym}(\Omega)$ is **quasiprimitive** if every nontrivial normal subgroup of *G* is transitive.

A permutation group $G \leq \text{Sym}(\Omega)$ is **quasiprimitive** if every nontrivial normal subgroup of *G* is transitive.

Theorem 1 (Devillers, H., Morgan '18) Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

A permutation group $G \leq \text{Sym}(\Omega)$ is **quasiprimitive** if every nontrivial normal subgroup of *G* is transitive.

Theorem 1 (Devillers, H., Morgan '18) Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

A permutation group $G \leq \text{Sym}(\Omega)$ is **semiprimitive** if every nontrivial normal subgroup of *G* is either transitive or semiregular.

A permutation group $G \leq \text{Sym}(\Omega)$ is **quasiprimitive** if every nontrivial normal subgroup of *G* is transitive.

Theorem 1 (Devillers, H., Morgan '18) Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

A permutation group $G \leq \text{Sym}(\Omega)$ is **semiprimitive** if every nontrivial normal subgroup of *G* is either transitive or semiregular.

Theorem 2 (Devillers, H., Morgan '18)

Let *G* be a nonquasiprimitive semiprimitive group. Then D(G) = 2 or *G* is $GL_2(3)$ on the nonzero vectors of \mathbb{F}_2^3 and D(G) = 3.

Let Γ be a connected noncomplete graph.

Let Γ be a connected noncomplete graph.

Assume $Aut(\Gamma)$ is semiprimitive.

Let Γ be a connected noncomplete graph.

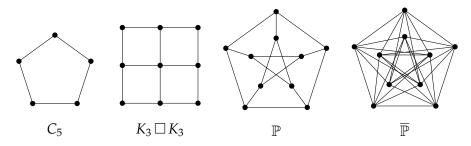
Assume $Aut(\Gamma)$ is semiprimitive.

Then $D(\Gamma) = 2$

Let Γ be a connected noncomplete graph.

Assume $Aut(\Gamma)$ is semiprimitive.

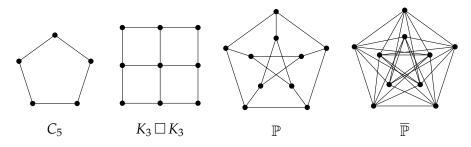
Then $D(\Gamma) = 2$ or Γ is one of the following



Let Γ be a connected noncomplete graph.

Assume $Aut(\Gamma)$ is semiprimitive.

Then $D(\Gamma) = 2$ or Γ is one of the following

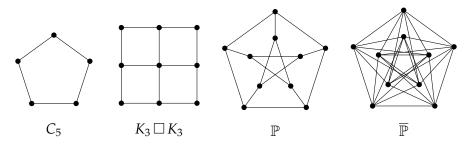


Example (Praeger '93)

Let Γ be a connected noncomplete graph.

Assume $Aut(\Gamma)$ is semiprimitive.

Then $D(\Gamma) = 2$ or Γ is one of the following



Example (Praeger '93)

A **2-arc** is a path of three distinct vertices.

Let Γ be a connected noncomplete graph.

Assume $Aut(\Gamma)$ is semiprimitive.

Then $D(\Gamma) = 2$ or Γ is one of the following



Example (Praeger '93)

A **2-arc** is a path of three distinct vertices.

If Γ is 2-arc-transitive and not bipartite, then Aut(Γ) is semiprimitive.

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Therefore *G* is semiprimitive, so D(G) = 2 or *G* is

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Therefore *G* is semiprimitive, so D(G) = 2 or *G* is

 $\operatorname{GL}_2(2)\cong\operatorname{Sym}(\Omega)$,

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Therefore *G* is semiprimitive, so D(G) = 2 or *G* is

 $GL_2(2)\cong Sym(\Omega),\ GL_3(2)\cong PSL_2(7),\ GL_4(2)\cong Alt(8),$

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Therefore *G* is semiprimitive, so D(G) = 2 or *G* is

 $GL_2(2)\cong Sym(\Omega),\ GL_3(2)\cong PSL_2(7),\ GL_4(2)\cong Alt(8),\ GL_2(3)$

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Therefore *G* is semiprimitive, so D(G) = 2 or *G* is

 $GL_2(2)\cong Sym(\Omega),\ GL_3(2)\cong PSL_2(7),\ GL_4(2)\cong Alt(8),\ GL_2(3)$

(Chan '06; Klavžar, Wong, Zhu '06)

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Therefore *G* is semiprimitive, so D(G) = 2 or *G* is

 $GL_2(2)\cong Sym(\Omega),\ GL_3(2)\cong PSL_2(7),\ GL_4(2)\cong Alt(8),\ GL_2(3)$

(Chan '06; Klavžar, Wong, Zhu '06)

Example 3. Simple groups

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Therefore *G* is semiprimitive, so D(G) = 2 or *G* is

 $GL_2(2)\cong Sym(\Omega),\ GL_3(2)\cong PSL_2(7),\ GL_4(2)\cong Alt(8),\ GL_2(3)$

(Chan '06; Klavžar, Wong, Zhu '06)

Example 3. Simple groups

Let $G \leq \text{Sym}(\Omega)$ be simple and transitive.

Let $d \ge 2$ and let *G* be $GL_d(q)$ on the nonzero vectors of \mathbb{F}_q^d .

A normal subgroup of *G* either contains $SL_d(q)$ (transitive) or is contained in $Z(GL_d(q))$ (semiregular), if $G \notin \{GL_2(2), GL_3(2)\}$.

Therefore *G* is semiprimitive, so D(G) = 2 or *G* is

 $GL_2(2)\cong Sym(\Omega),\ GL_3(2)\cong PSL_2(7),\ GL_4(2)\cong Alt(8),\ GL_2(3)$

(Chan '06; Klavžar, Wong, Zhu '06)

Example 3. Simple groups

Let $G \leq \text{Sym}(\Omega)$ be simple and transitive.

Then *G* is quasiprimitive, so D(G) = 2 or $G = Alt(\Omega)$ or *G* is one of the 13 simple primitive groups in \mathcal{P} .

Methods

Let Σ be a *G*-invariant partition of Ω .

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \text{Sym}(\Sigma)$ be the corresponding permutation group.

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \text{Sym}(\Sigma)$ be the corresponding permutation group.

Then $G_{(\Sigma)}$ is the kernel of this action and $G^{\Sigma} \cong G/G_{(\Sigma)}$.

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \operatorname{Sym}(\Sigma)$ be the corresponding permutation group.

Then $G_{(\Sigma)}$ is the kernel of this action and $G^{\Sigma} \cong G/G_{(\Sigma)}$.

Key Lemma

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \operatorname{Sym}(\Sigma)$ be the corresponding permutation group.

Then $G_{(\Sigma)}$ is the kernel of this action and $G^{\Sigma} \cong G/G_{(\Sigma)}$.

Key Lemma Let $G \leq \text{Sym}(\Omega)$ be semiprimitive.

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \operatorname{Sym}(\Sigma)$ be the corresponding permutation group.

Then $G_{(\Sigma)}$ is the kernel of this action and $G^{\Sigma} \cong G/G_{(\Sigma)}$.

Key Lemma Let $G \leq \text{Sym}(\Omega)$ be semiprimitive. Let Σ be a nontrivial *G*-invariant partition of Ω.

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \operatorname{Sym}(\Sigma)$ be the corresponding permutation group.

Then $G_{(\Sigma)}$ is the kernel of this action and $G^{\Sigma} \cong G/G_{(\Sigma)}$.

Key Lemma Let $G \leq \text{Sym}(\Omega)$ be semiprimitive. Let Σ be a nontrivial *G*-invariant partition of Ω . Then

(i) $D(G) \leq D(G^{\Sigma})$

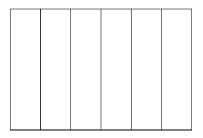
Let Σ be a *G*-invariant partition of Ω .

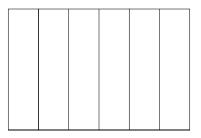
Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \text{Sym}(\Sigma)$ be the corresponding permutation group.

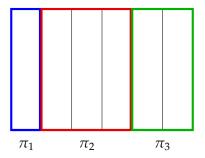
Then $G_{(\Sigma)}$ is the kernel of this action and $G^{\Sigma} \cong G/G_{(\Sigma)}$.

Key Lemma Let $G \leq \text{Sym}(\Omega)$ be semiprimitive. Let Σ be a nontrivial *G*-invariant partition of Ω . Then (i) $D(G) \leq D(G^{\Sigma})$ (ii) if $|\sigma| \ge |\Sigma| - 1$ for all $\sigma \in \Sigma$, then D(G) = 2

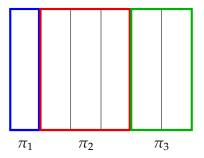




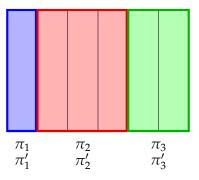
Let
$$D(G^{\Sigma}) = d$$
 and let $\Pi = \{\pi_1, \dots, \pi_d\}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$.



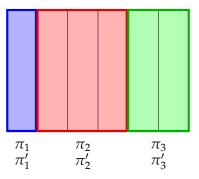
Let $D(G^{\Sigma}) = d$ and let $\Pi = \{\pi_1, \dots, \pi_d\}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$.



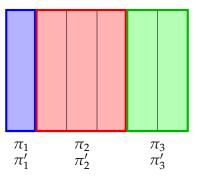
Let $D(G^{\Sigma}) = d$ and let $\Pi = \{\pi_1, \dots, \pi_d\}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$. Let $\Pi' = \{\pi'_1, \dots, \pi'_d\}$ be the corresponding partition of Ω .



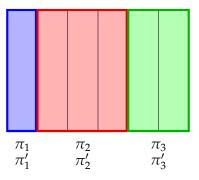
Let $D(G^{\Sigma}) = d$ and let $\Pi = \{\pi_1, \dots, \pi_d\}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$. Let $\Pi' = \{\pi'_1, \dots, \pi'_d\}$ be the corresponding partition of Ω .



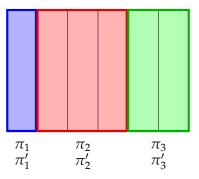
Let $D(G^{\Sigma}) = d$ and let $\Pi = {\pi_1, ..., \pi_d}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$. Let $\Pi' = {\pi'_1, ..., \pi'_d}$ be the corresponding partition of Ω . Let $g \in G_{(\Pi')}$.



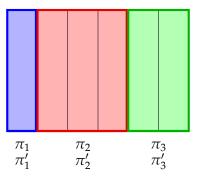
Let $D(G^{\Sigma}) = d$ and let $\Pi = \{\pi_1, \dots, \pi_d\}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$. Let $\Pi' = \{\pi'_1, \dots, \pi'_d\}$ be the corresponding partition of Ω . Let $g \in G_{(\Pi')}$. Then $g^{\Sigma} \in (G^{\Sigma})_{(\Pi)} = 1$.



Let $D(G^{\Sigma}) = d$ and let $\Pi = \{\pi_1, \dots, \pi_d\}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$. Let $\Pi' = \{\pi'_1, \dots, \pi'_d\}$ be the corresponding partition of Ω . Let $g \in G_{(\Pi')}$. Then $g^{\Sigma} \in (G^{\Sigma})_{(\Pi)} = 1$. Therefore, $g \in G_{(\Sigma)}$.



Let $D(G^{\Sigma}) = d$ and let $\Pi = \{\pi_1, \dots, \pi_d\}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$. Let $\Pi' = \{\pi'_1, \dots, \pi'_d\}$ be the corresponding partition of Ω . Let $g \in G_{(\Pi')}$. Then $g^{\Sigma} \in (G^{\Sigma})_{(\Pi)} = 1$. Therefore, $g \in G_{(\Sigma)}$. Since $G_{(\Sigma)}$ is an intransitive normal subgroup, $G_{(\Sigma)} = 1$.



Let $D(G^{\Sigma}) = d$ and let $\Pi = \{\pi_1, \dots, \pi_d\}$ satisfy $(G^{\Sigma})_{(\Pi)} = 1$. Let $\Pi' = \{\pi'_1, \dots, \pi'_d\}$ be the corresponding partition of Ω . Let $g \in G_{(\Pi')}$. Then $g^{\Sigma} \in (G^{\Sigma})_{(\Pi)} = 1$. Therefore, $g \in G_{(\Sigma)}$. Since $G_{(\Sigma)}$ is an intransitive normal subgroup, $G_{(\Sigma)} = 1$. Therefore, g = 1, so Π' witnesses $D(G) \leq d = D(G^{\Sigma})$.

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \operatorname{Sym}(\Sigma)$ be the corresponding permutation group.

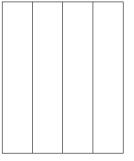
Then $G_{(\Sigma)}$ is the kernel of this action and $G^{\Sigma} \cong G/G_{(\Sigma)}$.

Key Lemma

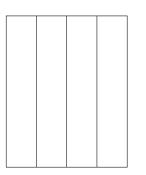
Let $G \leq \text{Sym}(\Omega)$ be semiprimitive. Let Σ be a nontrivial *G*-invariant partition of Ω . Then

Write
$$\Sigma = \{\sigma_1, \ldots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.

Write $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$. Assume $|\sigma_i| \ge |\Sigma| - 1$.

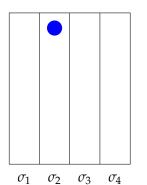


 $\sigma_1 \quad \sigma_2 \quad \sigma_3 \quad \sigma_4$

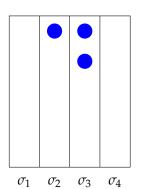


Write $\Sigma = \{\sigma_1, \dots, \sigma_m\}$. Assume $|\sigma_i| \ge |\Sigma| - 1$. Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.

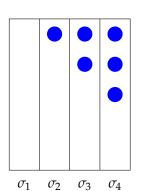
 $\sigma_1 \quad \sigma_2 \quad \sigma_3 \quad \sigma_4$



Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.



Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.



Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.

$\sigma_1 \sigma_2 \sigma_3 \sigma_4$		

Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.

σ_1	σ_2	σ_3	σ_4

Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.

σ_1	σ_2	σ_3	σ_4

Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.
Let $g \in G_{(\Pi)}$ and $1 \le i \le m$.

σ_1	σ_2	σ_3	σ_4

Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.
Let $g \in G_{(\Pi)}$ and $1 \le i \le m$. Then $\sigma_i g = \sigma_j$.

σ_1	σ_2	σ_3	σ_4

Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.
Let $g \in G_{(\Pi)}$ and $1 \le i \le m$. Then $\sigma_i g = \sigma_j$.
 $|\sigma_i \cap \pi| = |\sigma_j \cap \pi|$

σ_1	σ_2	σ_3	σ_4

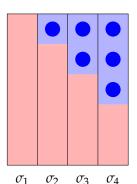
Write
$$\Sigma = \{\sigma_1, \dots, \sigma_m\}$$
. Assume $|\sigma_i| \ge |\Sigma| - 1$.
Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$.
Let $g \in G_{(\Pi)}$ and $1 \le i \le m$. Then $\sigma_i g = \sigma_j$.
 $|\sigma_i \cap \pi| = |\sigma_j \cap \pi| \implies i = j$

 σ_1

 $\sigma_2 \quad \sigma_3 \quad \sigma_4$

Write $\Sigma = \{\sigma_1, \dots, \sigma_m\}$. Assume $|\sigma_i| \ge |\Sigma| - 1$. Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$. Let $g \in G_{(\Pi)}$ and $1 \le i \le m$. Then $\sigma_i g = \sigma_j$. $|\sigma_i \cap \pi| = |\sigma_j \cap \pi| \implies i = j$

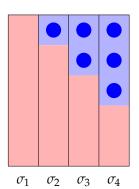
Therefore, $g \in G_{(\Sigma)}$.



Write $\Sigma = \{\sigma_1, \dots, \sigma_m\}$. Assume $|\sigma_i| \ge |\Sigma| - 1$. Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$. Let $g \in G_{(\Pi)}$ and $1 \le i \le m$. Then $\sigma_i g = \sigma_j$. $|\sigma_i \cap \pi| = |\sigma_j \cap \pi| \implies i = j$

Therefore, $g \in G_{(\Sigma)}$.

Since $G_{(\Sigma)}$ is an intransitive normal subgroup, $G_{(\Sigma)}$ is semiregular.

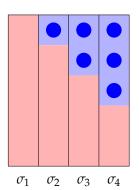


Write $\Sigma = \{\sigma_1, \dots, \sigma_m\}$. Assume $|\sigma_i| \ge |\Sigma| - 1$. Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$. Let $g \in G_{(\Pi)}$ and $1 \le i \le m$. Then $\sigma_i g = \sigma_j$. $|\sigma_i \cap \pi| = |\sigma_j \cap \pi| \implies i = j$

Therefore, $g \in G_{(\Sigma)}$.

Since $G_{(\Sigma)}$ is an intransitive normal subgroup, $G_{(\Sigma)}$ is semiregular.

Since *g* fixes a point, g = 1.



Write $\Sigma = \{\sigma_1, \dots, \sigma_m\}$. Assume $|\sigma_i| \ge |\Sigma| - 1$. Define $\Pi = \{\pi, \overline{\pi}\}$ such that $|\sigma_i \cap \pi| = i - 1$. Let $g \in G_{(\Pi)}$ and $1 \le i \le m$. Then $\sigma_i g = \sigma_j$. $|\sigma_i \cap \pi| = |\sigma_j \cap \pi| \implies i = j$

Therefore, $g \in G_{(\Sigma)}$.

Since $G_{(\Sigma)}$ is an intransitive normal subgroup, $G_{(\Sigma)}$ is semiregular.

Since *g* fixes a point, g = 1.

Therefore, Π witnesses D(G) = 2.

Let Σ be a *G*-invariant partition of Ω .

Then *G* acts on the parts of Σ .

Let $G^{\Sigma} \leq \operatorname{Sym}(\Sigma)$ be the corresponding permutation group.

Then $G_{(\Sigma)}$ is the kernel of this action and $G^{\Sigma} \cong G/G_{(\Sigma)}$.

Key Lemma

Let $G \leq \text{Sym}(\Omega)$ be semiprimitive. Let Σ be a nontrivial *G*-invariant partition of Ω . Then

Theorem 1 (Devillers, H., Morgan '18) Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2. **Theorem 1** (Devillers, H., Morgan '18) Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω .

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω . Then G^{Σ} is primitive and $G \cong G^{\Sigma}$ as abstract groups.

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω . Then G^{Σ} is primitive and $G \cong G^{\Sigma}$ as abstract groups.

1. $D(G) \leq D(G^{\Sigma}) = 2$

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω . Then G^{Σ} is primitive and $G \cong G^{\Sigma}$ as abstract groups.

- **1.** $D(G) \leq D(G^{\Sigma}) = 2$
- **2.** $G^{\Sigma} \in {\operatorname{Sym}(\Sigma), \operatorname{Alt}(\Sigma)}$

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω . Then G^{Σ} is primitive and $G \cong G^{\Sigma}$ as abstract groups.

- **1.** $D(G) \leq D(G^{\Sigma}) = 2$
- **2.** $G^{\Sigma} \in {\operatorname{Sym}(\Sigma), \operatorname{Alt}(\Sigma)}$

3. $G^{\Sigma} \in \mathcal{P}$

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω . Then G^{Σ} is primitive and $G \cong G^{\Sigma}$ as abstract groups.

- 1. $D(G) \leq D(G^{\Sigma}) = 2$
- **2.** $G^{\Sigma} \in {\operatorname{Sym}(\Sigma), \operatorname{Alt}(\Sigma)}$
 - Assume that $G^{\Sigma} = \operatorname{Alt}(\Sigma)$ and $|\Sigma| \ge 6$.

3.
$$G^{\Sigma} \in \mathcal{P}$$

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω . Then G^{Σ} is primitive and $G \cong G^{\Sigma}$ as abstract groups.

- 1. $D(G) \leq D(G^{\Sigma}) = 2$
- **2.** $G^{\Sigma} \in {\operatorname{Sym}(\Sigma), \operatorname{Alt}(\Sigma)}$
 - ► Assume that $G^{\Sigma} = \operatorname{Alt}(\Sigma)$ and $|\Sigma| \ge 6$. Then $G_{\omega} \le G_{\{\sigma\}} = (G^{\Sigma})_{\sigma} = \operatorname{Alt}(|\Sigma| - 1)$.

3. $G^{\Sigma} \in \mathcal{P}$

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω . Then G^{Σ} is primitive and $G \cong G^{\Sigma}$ as abstract groups.

- **1.** $D(G) \leq D(G^{\Sigma}) = 2$
- **2.** $G^{\Sigma} \in {\operatorname{Sym}(\Sigma), \operatorname{Alt}(\Sigma)}$

► Assume that
$$G^{\Sigma} = \operatorname{Alt}(\Sigma)$$
 and $|\Sigma| \ge 6$.
Then $G_{\omega} \le G_{\{\sigma\}} = (G^{\Sigma})_{\sigma} = \operatorname{Alt}(|\Sigma| - 1)$.
Now $|\sigma| = |G_{\{\sigma\}} : G_{\omega}| \ge |\Sigma| - 1$, so $D(G) = 2$.

3. $G^{\Sigma} \in \mathcal{P}$

Let *G* be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since *G* is imprimitive, fix a maximal *G*-invariant partition Σ of Ω . Then G^{Σ} is primitive and $G \cong G^{\Sigma}$ as abstract groups.

- **1.** $D(G) \leq D(G^{\Sigma}) = 2$
- **2.** $G^{\Sigma} \in {\operatorname{Sym}(\Sigma), \operatorname{Alt}(\Sigma)}$

► Assume that
$$G^{\Sigma} = \operatorname{Alt}(\Sigma)$$
 and $|\Sigma| \ge 6$.
Then $G_{\omega} \le G_{\{\sigma\}} = (G^{\Sigma})_{\sigma} = \operatorname{Alt}(|\Sigma| - 1)$.
Now $|\sigma| = |G_{\{\sigma\}} : G_{\omega}| \ge |\Sigma| - 1$, so $D(G) = 2$.

3. $G^{\Sigma} \in \mathcal{P}$

Computation in MAGMA