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Background



Let Ω be a finite set and let G 6 Sym(Ω) be a permutation group.

The distinguishing number of G, written D(G), is the least k > 1 for
which there exists a partition Π of Ω into k parts such that

G(Π) =
⋂

π∈Π

Gπ = 1.

Observation

D(G) = 1 ⇐⇒ G = 1

D(G) = 2 ⇐⇒ G has a regular orbit on P(Ω)

Question When is D(G) = 2?
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Example 1. Graphs

The distinguishing number of a graph Γ is the distinguishing number
of its automorphism group Aut(Γ) acting on its vertex set Ω.

Some permutation groups never arise in this context, e.g. Sym(Ω) is
the only 2-transitive group which arises.

Example 2. Vector spaces

Let F be a field and let d > 2. Let G be the group GLd(F) acting on the
set Ω of nonzero vectors of Fd. What is D(G)?

Example 3. Simple groups

Let G 6 Sym(Ω) be a simple group. What is D(G)?

Example 4. Primitive groups

Let G 6 Sym(Ω) be a primitive permutation group. What is D(G)?
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Theorem (Cameron, Neumann, Saxl ’84; Seress ’97; Dolfi ’00)

Let G 6 Sym(Ω) be primitive. Then one of the following holds.

(i) G = Sym(Ω) and D(G) = n
(ii) G = Alt(Ω) and D(G) = n− 1

(iii) D(G) = 2
(iv) G ∈ P and 3 6 D(G) 6 4

P is a set of 43 permutation groups of degree at most 32

� G = AGL5(2) = 25: GL5(2) on F5
2 with D(G) = 3

� G = Sym(5) on the vertices of the Petersen graph with D(G) = 3
� G = M11 on 11 points with D(G) = 4

Question Can we extend this result to a wider class of groups?
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The base size of G, written b(G), is the least k > 1 for which there
exists a subset B ⊆ Ω of size k such that

G(B) =
⋂
b∈B

Gb = 1.

Examples

1. b(Sym(n)) = n− 1 & b(Alt(n)) = n− 2

2. b(GLd(F)) = d

3. b(G) =
⌈ 2

3 (m− 1)
⌉

if G is Sym(m) on the 2-subsets of {1, . . . , m}

Observation D(G) 6 b(G) + 1



The base size of G, written b(G), is the least k > 1 for which there
exists a subset B ⊆ Ω of size k such that

G(B) =
⋂
b∈B

Gb = 1.

Examples

1. b(Sym(n)) = n− 1 & b(Alt(n)) = n− 2

2. b(GLd(F)) = d

3. b(G) =
⌈ 2

3 (m− 1)
⌉

if G is Sym(m) on the 2-subsets of {1, . . . , m}

Observation D(G) 6 b(G) + 1



The base size of G, written b(G), is the least k > 1 for which there
exists a subset B ⊆ Ω of size k such that

G(B) =
⋂
b∈B

Gb = 1.

Examples

1. b(Sym(n)) = n− 1 & b(Alt(n)) = n− 2

2. b(GLd(F)) = d

3. b(G) =
⌈ 2

3 (m− 1)
⌉

if G is Sym(m) on the 2-subsets of {1, . . . , m}

Observation D(G) 6 b(G) + 1



The base size of G, written b(G), is the least k > 1 for which there
exists a subset B ⊆ Ω of size k such that

G(B) =
⋂
b∈B

Gb = 1.

Examples

1. b(Sym(n)) = n− 1 & b(Alt(n)) = n− 2

2. b(GLd(F)) = d

3. b(G) =
⌈ 2

3 (m− 1)
⌉

if G is Sym(m) on the 2-subsets of {1, . . . , m}

Observation D(G) 6 b(G) + 1



The base size of G, written b(G), is the least k > 1 for which there
exists a subset B ⊆ Ω of size k such that

G(B) =
⋂
b∈B

Gb = 1.

Examples

1. b(Sym(n)) = n− 1 & b(Alt(n)) = n− 2

2. b(GLd(F)) = d

3. b(G) =
⌈ 2

3 (m− 1)
⌉

if G is Sym(m) on the 2-subsets of {1, . . . , m}

Observation D(G) 6 b(G) + 1



The base size of G, written b(G), is the least k > 1 for which there
exists a subset B ⊆ Ω of size k such that

G(B) =
⋂
b∈B

Gb = 1.

Examples

1. b(Sym(n)) = n− 1 & b(Alt(n)) = n− 2

2. b(GLd(F)) = d

3. b(G) =
⌈ 2

3 (m− 1)
⌉

if G is Sym(m) on the 2-subsets of {1, . . . , m}

Observation D(G) 6 b(G) + 1



The base size of G, written b(G), is the least k > 1 for which there
exists a subset B ⊆ Ω of size k such that

G(B) =
⋂
b∈B

Gb = 1.

Examples

1. b(Sym(n)) = n− 1 & b(Alt(n)) = n− 2

2. b(GLd(F)) = d

3. b(G) =
⌈ 2

3 (m− 1)
⌉

if G is Sym(m) on the 2-subsets of {1, . . . , m}

Observation D(G) 6 b(G) + 1



Theorem (Halasi, Liebeck, Maróti ’18)
Let G 6 Sym(n) be primitive. Then

log n|G| 6 b(G) 6 2 log n|G|+ 24

Example
Let G = Sym(m) on 2-subsets of {1, . . . , m}. Then b(G) = d 2

3 (m− 1)e.
(Note: |G| ≈ mm and n ≈ m2)

Theorem (Duyan, Halasi, Maróti ’18)
Let G 6 Sym(n) be transitive. Then

|G| 1n 6 D(G) 6 48 |G| 1n

Example
Let G = Sym(m) o Sym(m) on {1, . . . , m}2. Then D(G) = m + 1.

(Note: |G| ≈ mm2
and n ≈ m2)
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Let G 6 Sym(n) be primitive. Then

log n|G| 6 b(G) 6 2 log n|G|+ 24

Example
Let G = Sym(m) on 2-subsets of {1, . . . , m}. Then b(G) = d 2

3 (m− 1)e.
(Note: |G| ≈ mm and n ≈ m2)

Theorem (Duyan, Halasi, Maróti ’18)
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Results



Recall If G 6 Sym(Ω) is primitive, then every nontrivial normal
subgroup of G is transitive.

A permutation group G 6 Sym(Ω) is quasiprimitive if every
nontrivial normal subgroup of G is transitive.

Theorem 1 (Devillers, H., Morgan ’18)
Let G be an imprimitive quasiprimitive group. Then D(G) = 2.

A permutation group G 6 Sym(Ω) is semiprimitive if every
nontrivial normal subgroup of G is either transitive or semiregular.

Theorem 2 (Devillers, H., Morgan ’18)
Let G be a nonquasiprimitive semiprimitive group. Then D(G) = 2
or G is GL2(3) on the nonzero vectors of F3

2 and D(G) = 3.
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Example 1. Graphs

Let Γ be a connected noncomplete graph.

Assume Aut(Γ) is semiprimitive.

Then D(Γ) = 2 or Γ is one of the following

C5 K3�K3 P P

Example (Praeger ’93)
A 2-arc is a path of three distinct vertices.
If Γ is 2-arc-transitive and not bipartite, then Aut(Γ) is semiprimitive.
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Example 2. Vector spaces

Let d > 2 and let G be GLd(q) on the nonzero vectors of Fd
q .

A normal subgroup of G either contains SLd(q) (transitive) or is
contained in Z(GLd(q)) (semiregular), if G 6∈ {GL2(2), GL3(2)}.
Therefore G is semiprimitive, so D(G) = 2 or G is

GL2(2) ∼= Sym(Ω), GL3(2) ∼= PSL2(7), GL4(2) ∼= Alt(8), GL2(3)

(Chan ’06; Klavžar, Wong, Zhu ’06)

Example 3. Simple groups

Let G 6 Sym(Ω) be simple and transitive.

Then G is quasiprimitive, so D(G) = 2

or G = Alt(Ω) or G is one of
the 13 simple primitive groups in P .
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(Chan ’06; Klavžar, Wong, Zhu ’06)

Example 3. Simple groups

Let G 6 Sym(Ω) be simple and transitive.

Then G is quasiprimitive, so D(G) = 2

or G = Alt(Ω) or G is one of
the 13 simple primitive groups in P .



Example 2. Vector spaces

Let d > 2 and let G be GLd(q) on the nonzero vectors of Fd
q .

A normal subgroup of G either contains SLd(q) (transitive) or is
contained in Z(GLd(q)) (semiregular), if G 6∈ {GL2(2), GL3(2)}.
Therefore G is semiprimitive, so D(G) = 2 or G is

GL2(2) ∼= Sym(Ω), GL3(2) ∼= PSL2(7), GL4(2) ∼= Alt(8),

GL2(3)
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(Chan ’06; Klavžar, Wong, Zhu ’06)

Example 3. Simple groups

Let G 6 Sym(Ω) be simple and transitive.

Then G is quasiprimitive, so D(G) = 2 or G = Alt(Ω)

or G is one of
the 13 simple primitive groups in P .



Example 2. Vector spaces

Let d > 2 and let G be GLd(q) on the nonzero vectors of Fd
q .

A normal subgroup of G either contains SLd(q) (transitive) or is
contained in Z(GLd(q)) (semiregular), if G 6∈ {GL2(2), GL3(2)}.
Therefore G is semiprimitive, so D(G) = 2 or G is

GL2(2) ∼= Sym(Ω), GL3(2) ∼= PSL2(7), GL4(2) ∼= Alt(8), GL2(3)
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Methods



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma

Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma

Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma

Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma

Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma

Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma

Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma
Let G 6 Sym(Ω) be semiprimitive.

Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma
Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.

Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma
Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma
Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Proof of (i) Assume that G is quasiprimitive.

π1 π2 π3
π′1 π′2 π′3

Let D(GΣ) = d and let Π = {π1, . . . , πd} satisfy (GΣ)(Π) = 1.

Let Π′ = {π′1, . . . , π′d} be the corresponding partition of Ω.

Let g ∈ G(Π′).

Then gΣ ∈ (GΣ)(Π) = 1. Therefore, g ∈ G(Σ).

Since G(Σ) is an intransitive normal subgroup, G(Σ) = 1.

Therefore, g = 1, so Π′ witnesses D(G) 6 d = D(GΣ).
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Proof of (ii)

σ1 σ2 σ3 σ4

Write Σ = {σ1, . . . , σm}. Assume |σi| > |Σ| − 1.

Define Π = {π, π} such that |σi ∩ π| = i− 1.

Let g ∈ G(Π) and 1 6 i 6 m. Then σig = σj.

|σi ∩ π| = |σj ∩ π|

=⇒ i = j

Therefore, g ∈ G(Σ).

Since G(Σ) is an intransitive normal subgroup,
G(Σ) is semiregular.

Since g fixes a point, g = 1.

Therefore, Π witnesses D(G) = 2.
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Investigate the action of G on Ω by studying the induced
actions of G on G-invariant partitions of Ω.

Let Σ be a G-invariant partition of Ω.

Then G acts on the parts of Σ.

Let GΣ 6 Sym(Σ) be the corresponding permutation group.

Then G(Σ) is the kernel of this action and GΣ ∼= G/G(Σ).

Key Lemma
Let G 6 Sym(Ω) be semiprimitive.
Let Σ be a nontrivial G-invariant partition of Ω.
Then

(i) D(G) 6 D(GΣ)

(ii) if |σ| > |Σ| − 1 for all σ ∈ Σ, then D(G) = 2



Theorem 1 (Devillers, H., Morgan ’18)
Let G be an imprimitive quasiprimitive group. Then D(G) = 2.

Sketch of Proof

Since G is imprimitive, fix a maximal G-invariant partition Σ of Ω.

Then GΣ is primitive and G ∼= GΣ as abstract groups.

1. D(G) 6 D(GΣ) = 2

2. GΣ ∈ {Sym(Σ), Alt(Σ)}

� Assume that GΣ = Alt(Σ) and |Σ| > 6.
Then Gω 6 G{σ} = (GΣ)σ = Alt(|Σ| − 1).
Now |σ| = |G{σ} : Gω | > |Σ| − 1, so D(G) = 2.

3. GΣ ∈ P

� Computation in MAGMA
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