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What is a group?
It depends who you ask.

Groups are viewed from many different perspectives by a diversity of
people with a wide range of differing interests. Sometimes two seemingly
unrelated properties of a group, coming from two radically distinct
viewpoints, miraculously happen to be equivalent. I'll tell you about some
of the different perspectives on group theory and then focus on one case
where a surprising bridge was built, the Muller-Schupp theorem.

| expect the audience to arrive knowing what a group is and leave doubting
that they ever did.
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2 Who/whom confusion
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A group is a set together with a binary operation satisfying ...

Dg = {1,a,a* a°, b, ab, a’b, a*b}

X 1 a a da b ab a’b ab
1 1 a @ @ b ab a*b ab
al|l a a a@ 1 ab @b a&b b
a? a? ad 1 a ab a3b b a’b
a3 a’ 1 a a2 @b b ab  a’b
b | b ab® @®b ab 1 @& @ a
ab|ab b @b @b a 1 @ a
abla*b ab b @b @ a 1 @&
a@b|ad ab ab b @ @ a 1
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Permutation groups

b a
, symmetries of an oblong

a=(1234) b=(14)(23) {id, (12)(34), (14)(23), (13)(24)}
Dg = ((1234),(14)(23)) < Sym(4) {id, (13), (24), (13)(24)}

A permutation group is a subgroup G < Sym(Q).

Cayley’'s Theorem Every group is a permutation group.



PREFACE TO THE FIRST EDITION

Cayley's dictum that “a group is defined by means of the
laws of combination of its symbols ” would imply that, in dealing
purely with the theory of groups, no more concrete mode of
representation should be used than is absolutely necessary.
It may then be asked why, in a book which professes to leave
all applications on one side, a considerable space is devoted to
substitation groups ;

- ]

[ My answer to this question is that [ in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties

of substitution groups,

W. BURNSIDE

July 1897
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PREFACE TO THE FIRST EDITION

Cayley’s dictum that “a group is defined by means of the
laws of combination of its symbols ” would imply that, in dealing
purely with the theory of groups, no more concrete mode of
representation should be used than is absolutely necessary.
It may then be asked why, in a book which professes to leave
all applications on one side, a considerable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of groups
of linear transformations.

W. BURNSIDE
July 1897



Theorem (Burnside, 1904)
Let p and g be prime. Any group of order p2q® is soluble.
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Theorem (Burnside, 1904)
Let p and g be prime. Any group of order pq® is soluble.

Ambrose Burnside



PREFACE TO THE SECOND EDITION

ERY considerable advances in the theory of groups of

finite order have been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

W. BURNSIDE
March 1911
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Different generating sets give
different Cayley graphs

- Think up to quasiisometry

Different groups have the same
Cayley graph

(Do, {@, b}) - Get used to it
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0808080803080

Nz, {1,-1)
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“If H is a finite index subgroup of G, then H looks the same as G
- a geometric group theorist

The index of a subgroup H < G is the cardinality of the set {Hg | g € G}.
(a) is a finite index subgroup of Do, = (a, b)

If H is a finite index subgroup of G, then '(H) is quasiisometric to I'(G).

is quasiisometric to I 0 TG G

A group is virtually purple if it has finite index subgroup that is purple.

(a) is cyclic so Do is virtually cyclic
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Combinatorial group theory

Dg = {(a,b|a*=1, b>=1, ba=a"'b)

a presentation for Dg

Examples
(a|a*=1)=C, X Z/4ZL
(a])=Z=F

{(a,b| b*=1, ba=a""b) = Do,
(a,b])=F

A group is free if it admits a presentation of the form (A | ).
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The problem with presentations

Tell me something about this group
{a,b,c|ab = b%a, bc = ?b, ca = a’c)
It's trivial.

The sad reality
Determining whether a presentation gives the trivial group is undecidable.

The Word Problem (Dehn, 1911)
Fix a finitely generated group G = (A). Determine whether a word in A is
trivial in G.

Theorem (Novikov, 1954)
There are groups for which the Word Problem is undecidable.
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A group G is finite <= word problem for G is solvable by an automaton

Dg = (a,b|a*=b>=1, ba=ab®) abaaabbaab



Theorem
A group G is free = word problem for G is solvable



Theorem
A group G is free = word problem for G is solvable by a stack



Theorem

A group G is free = word problem for G is solvable by a stack

The category cis called a stack over the category C
with a Grothendieck topology if it is a prestack over
C and every descent datum is effective. A descent
datum consists roughly of a covering of an object V
of Cby a family V;, elements x;in the fiber over V;,
and morphisms f; between the restrictions of x; and
x;to VizVixyV; satisfying the compatibility condition
fi = Tl The descent datum is called effective if
the elements x; are essentially the pullbacks of an
element x with image V.
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And so our scene must to the battle fly,

Where - O for pity! — we shall much disgrace
With four or five most vile and ragged foils,
Right ill-disposed in brawl ridiculous,

The name of Agincourt. Yet sit and see,

Minding true things by what their mockeries be.

- Henry V (Act IV, prologue)
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Theorem
A group G is free = word problem for G is solvable by a stack

F,=(a,bl) ab'a'abaaa™

Theorem (Muller-Schupp, 1983)

A group G is virtually free <= word problem for G is solvable
by a push down automaton
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