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Questions

1 What stronger properties do the finite simple groups have?
2 Which other finite groups are %—generated?

3 What about infinite groups?
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The generating graph of a group G is the graph I'(G) such that

® the vertices are the nontrivial elements of G

m two vertices g and h are adjacent if and only if (g, h) = G.

Dihedral group Dg = (a, b)
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Uniform Domination of Finite Simple Groups

joint with Tim Burness



Let G be a nonabelian finite simple group.



Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)
The following hold.




Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)
The following hold.
m For each x € G\1, there exists y € G such that G = (x, ).




Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)
The following hold.
m For each x € G\1, there exists y € G such that G = (x, ).

® There exists a conjugacy class C such that for all x € G \1, there exists
y € Csuch that G = (x,y).




Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)

The following hold.
m For each x € G\1, there exists y € G such that G = (x, ).
® There exists a conjugacy class C such that for all x € G \1, there exists
y € Csuch that G = (x,y).

Example Let G = A, fora prime p > 5. Then C = (12 --- p)® works.



Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)

The following hold.
® For each x € G \1, there exists y € G such that G = (x, y).

® There exists a conjugacy class C such that for all x € G \1, there exists
y € Csuch that G = (x,y).

Example Let G = A, fora prime p > 5. Then C = (12 --- p)® works.
However, |C| = 3(p — 1)! and |G| = jp! so |c| = ]|G].



Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)
The following hold.

m For each x € G\1, there exists y € G such that G = (x, ).

® There exists a conjugacy class C such that for all x € G \1, there exists
y € Csuch that G = (x,y).

Example Let G = A, fora prime p > 5. Then C = (12 --- p)® works.
However, |C| = 3(p — 1)! and |G| = jp! so |c| = ]|G].

(OIIAleJsM Can we replace C with a much smaller subset S? ]




Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)
The following hold.
® For each x € G \1, there exists y € G such that G = (x, y).

® There exists a conjugacy class C such that for all x € G \1, there exists
y € Csuch that G = (x,y).

Example Let G = A, fora prime p > 5. Then C = (12 --- p)® works.
However, |C| = 3(p — 1)! and |G| = jp! so |c| = ]|G].

(OIIAleJsM Can we replace C with a much smaller subset S? ]

Example If p =13,thenS={(12 --- 1213),(12 --- 131210 9 11)} works.



Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)
The following hold.

® For each x € G \1, there exists y € G such that G = (x, y).

® There exists a conjugacy class C such that for all x € G \1, there exists
y € Csuch that G = (x,y).

Example Let G = A, fora prime p > 5. Then C = (12 --- p)® works.
However, |C| = 3(p — 1)! and |G| = jp! so |c| = ]|G].

(OIIAleJsM Can we replace C with a much smaller subset S? ]

Example If p =13,thenS={(12 --- 1213),(12 --- 131210 9 11)} works.
If p > 13, then {s1,5,} € (12 --- p)® works with
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Theorem (Guralnick & Kantor, 2000)
The following hold.

® For each x € G \1, there exists y € G such that G = (x, y).

® There exists a conjugacy class C such that for all x € G \1, there exists
y € Csuch that G = (x,y).

Example Let G = A, fora prime p > 5. Then C = (12 --- p)® works.
However, |C| = 3(p — 1)! and |G| = jp! so |c| = ]|G].
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Example If p =13,thenS={(12 --- 1213),(12 --- 131210 9 11)} works.
If p > 13, then {s1,s,} € (12 --- p)® works with probability at least 1 — %.
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Summary

1 There are infinitely many finite simple groups G with ~,(G) = 2
and we have a “near classification” of them.

Example: y,(Ap) =2 <= n > 13 is prime

2 In general, v,(G) can be arbitrarily large.

Example: 7,(An) > log,n where p is the least prime dividing n

3 We have “essentially best possible” upper bounds on ~,(G).
Example: v,(An) < 100 log,n

Remark: nis even = log,n < ,(An) < 2log,n
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Theorem (Burness & H, 2018 & 2019)

"Yu(G) =2 ? 'Yu(G) > 2 "Yu(G)
A An 100 log,n
(n > 13 prime) (o/w)
Ee, E7, Es, °Eg Fs, Gy 5
3D4, 2By, 2F4, %G, 2,(2)", 26,(3)
PSLz(q) PSLz(q) 3
(g > 11 odd) (o/w)
PSLa(q), PSUn(q) PSLs(q), PSUn(q)
(n odd) (n > 4 even) 10r + 50
PSP, (q)
Pﬂ%(g) Sp2r(2), Qar41(q)
M, Jq, ... CJ;Y,HHQN M+, Fins, . .. 4
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Let G act faithfully on a set 2. A base for the action of G on € is a subset
B C Q for which the pointwise stabiliser G() is trivial.

The base size, written b(G, £2), is the minimal size of a base for G on Q.

Examples
1 G=0GLy(F)and Q = F9\ {0} = b(G,Q)=d

2G6=S5,andQ=1{1,..., n} = b(G,Q)=n-1
3Ge{A,SntandQ={AC{1,..., n}| Al =R} =

log,n < b(G, Q) < [logﬁ, e n] -([n/k] —1) (Halasi, 2012).
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7u(An) < b(An, Q) < [10g[/un] - (In/k] 1) < 2log,n.



Classification of Finite Z-Generated Groups



Gis %-generated if for all x € G\1there exists y € G such that G = (x,y)

COEI T R EC TN Every finite simple group is %-generated.




Gis %-generated if for all x € G\1there exists y € G such that G = (x,y)

COEI T R EC TN Every finite simple group is %-generated.

Which finite groups are %-generated?




Gis %-generated if for all x € G\1there exists y € G such that G = (x,y)

COEI T R EC TN Every finite simple group is %-generated.

Which finite groups are %-generated?

Simple groups: Groups such that all proper quotients are trivial.



Gis %-generated if for all x € G\1there exists y € G such that G = (x,y)

COEI T R EC TN Every finite simple group is %-generated.

Which finite groups are %-generated?

Simple groups: Groups such that all proper quotients are trivial.

Perhaps: Groups such that all proper quotients are cyclic?



G is 3-generated if for all x € G\1there exists y € G such that G = (x, y)

COEI T R EC TN Every finite simple group is %-generated.

Which finite groups are %-generated?

Simple groups: Groups such that all proper quotients are trivial.

Perhaps: Groups such that all proper quotients are cyclic?




Let G be a finite group.

Proposition

Gis %—generated = every proper quotient of G is cyclic.




Let G be a finite group.

Proposition

Gis %—generated = every proper quotient of G is cyclic.




Let G be a finite group.

Proposition

Gis %—generated = every proper quotient of G is cyclic.

Let1# N < Gandfix1#neN.




Let G be a finite group.

Proposition

Gis %—generated = every proper quotient of G is cyclic.

Let1# N < Gandfix1#n € N.SinceGis %-generated, there existsy € G
such that (n,y) = G.




Let G be a finite group.

Proposition

Gis %—generated — every proper quotient of G is cyclic.

Let1# N < Gandfix1#n € N.SinceGis %—generated, there existsy € G
such that (n,y) = G.

In particular, (nN,yN) = G/N.




Let G be a finite group.

Proposition

Gis %—generated — every proper quotient of G is cyclic.

Let1# N < Gandfix1#n € N.SinceGis %—generated, there existsy € G
such that (n,y) = G.

In particular, (nN,yN) = G/N. Since nN is trivial in G/N, in fact, G/N = (yN).




Let G be a finite group.

Proposition

Gis %—generated — every proper quotient of G is cyclic.

Let1# N < Gandfix1#n € N.SinceGis %—generated, there existsy € G
such that (n,y) = G.

In particular, (nN,yN) = G/N. Since nN is trivial in G/N, in fact, G/N = (yN).
So G/N is cyclic. O




Let G be a finite group.

Proposition

Gis %—generated = every proper quotient of G is cyclic.

Let1# N < Gandfix1#n € N.SinceGis %-generated, there existsy € G
such that (n,y) = G.

In particular, (nN,yN) = G/N. Since nN is trivial in G/N, in fact, G/N = (yN).
So G/N is cyclic. O

3-Generation Conjecture (Breuer, Guralnick & Kantor, 2008)

=

G is 2-generated <= every proper quotient of G is cyclic.
2




Let G be a finite group.

3-Generation Conjecture

=

Gis %-generated <= every proper quotient of G is cyclic.




Let G be a finite group.

3-Generation Conjecture

=

Gis %-generated <= every proper quotient of G is cyclic.

N4 't suffices to prove the conjecture for almost simple groups. ]




Let G be a finite group.

3-Generation Conjecture

=

Gis %-generated <= every proper quotient of G is cyclic.

N4 't suffices to prove the conjecture for almost simple groups. ]

G is almost simple if T < G < Aut(T) for a nonabelian simple group T.



Let G be a finite group.

3-Generation Conjecture

=

Gis %-generated <= every proper quotient of G is cyclic.

N4 't suffices to prove the conjecture for almost simple groups. ]

G is almost simple if T < G < Aut(T) for a nonabelian simple group T.

Example If T = Aj, then G € {A,,S,} and G is %—generated (Piccard, 1939).



Let G be a finite group.

3

5-Generation Conjecture

Gis %-generated <= every proper quotient of G is cyclic.

eI @ 't suffices to prove the conjecture for almost simple groups. ]

G is almost simple if T < G < Aut(T) for a nonabelian simple group T.

Example If T = Aj, then G € {A,,S,} and G is %-generated (Piccard, 1939).

Theorem (H, 2017 & 2019+)

Let G be finite almost simple classical group. Then G is %—generated if and
only if every proper quotient of G is cyclic.
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Examples

1 Zis cyclic and therefore %—generated.

2 Gis a Tarski monster if it is infinite but |H| = pwhen 1 < H < G.

Tarski monsters are simple and %-generated, and they exist for all

primes p > 107 (Olshanskii, 1980).
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Let € be the Cantor space {0, 1}. Then V acts on ¢ by homeomorphisms.
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Theorem (Donoven & H, 2019)

Thompson’s group V is 3-generated.
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Theorem (Donoven & H, 2019)

For m > 1, the group mV is ——generated

For n > 2, the Higman-Thompson group V, actson €, = {0,1,...,n — 1}N.
If n'is even, V, is simple. If n is odd, V}, is simple and |V, : V]| = 2.

Theorem (Donoven & H, 2019)

For n > 2, the groups V, and V/, are %—generated.

Let G be Vp, V}, or mV. For each x € G\1 we constructy € Gs.t. G = (x, y).

Is there a conjugacy class C of G such that for all x € G \1there exists y € C
such that G = (x,y)?
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3-Generation Conjecture

5

A finite group is %—generated if and only if every proper quotient is cyclic.

Theorem (H, 2017 & 2019+)

The %-Generation Conjecture holds for almost simple classical groups.

Theorem (Donoven & H, 2019)

The Thompson-like groups Vp, V;, and mV are %-generated.




