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G is 2-generated if there exists x, y ∈ G such that G = 〈x, y〉

Steinberg, 1962 Every finite simple group is 2-generated.

G is 3
2-generated if for all x ∈ G \1 there exists y ∈ G such that G = 〈x, y〉

Guralnick & Kantor, 2000 Every finite simple group is 3
2 -generated.

Questions

1 What stronger properties do the finite simple groups have?

2 Which other finite groups are 3
2 -generated?

3 What about infinite groups?
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The generating graph of a group G is the graph Γ(G) such that
� the vertices are the nontrivial elements of G
� two vertices g and h are adjacent if and only if 〈g, h〉 = G.
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Uniform Domination of Finite Simple Groups
joint with Tim Burness



Let G be a nonabelian finite simple group.

Theorem (Guralnick & Kantor, 2000)
The following hold.

� For each x ∈ G \1, there exists y ∈ G such that G = 〈x, y〉.
� There exists a conjugacy class C such that for all x ∈ G \1, there exists
y ∈ C such that G = 〈x, y〉.

Example Let G = Ap for a prime p > 5. Then C = (1 2 · · · p)G works.

However, |C| = 1
2(p− 1)! and |G| = 1

2p! so |C| = 1
p |G|.

Question 1 Can we replace C with a much smaller subset S?

Example If p = 13, then S = {(1 2 · · · 12 13), (1 2 · · · 13 12 10 9 11)} works.

If p > 13, then {s1, s2} ⊆ (1 2 · · · p)G works with probability at least 1− 1
p .
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A uniform dominating set of G is a subset
S of conjugate elements such that for all
x ∈ G \1 there exists y ∈ S s.t. G = 〈x, y〉.

The uniform domination number γu(G) of
G is the least size of a UDS of G.

Examples

1 γu(Ap) = 2 if p > 13 is prime
2 γu(A4) = 2
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Theorem (Burness & H, 2018 & 2019)

Summary

1 There are infinitely many finite simple groups G with γu(G) = 2
and we have a “near classification” of them.

Example: γu(An) = 2 ⇐⇒ n > 13 is prime

2 In general, γu(G) can be arbitrarily large.

Example: γu(An) > logpn where p is the least prime dividing n

3 We have “essentially best possible” upper bounds on γu(G).

Example: γu(An) 6 100 log2n

Remark: n is even =⇒ log2n 6 γu(An) 6 2 log2n
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Let G act faithfully on a set Ω.

A base for the action of G on Ω is a subset
B ⊆ Ω for which the pointwise stabiliser G(B) is trivial.

The base size, written b(G, Ω), is the minimal size of a base for G on Ω.

Examples

1 G = GLd(F) and Ω = Fd \ {0} =⇒ b(G, Ω) = d

2 G = Sn and Ω = {1, . . . , n} =⇒ b(G, Ω) = n− 1
3 G ∈ {An, Sn} and Ω = {A ⊆ {1, . . . , n} | |A| = k} =⇒

log2n 6 b(G, Ω) 6
⌈
logdn/ken

⌉
· (dn/ke − 1) (Halasi, 2012).
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Lemma
Let s ∈ G. Assume H is the only maximal subgroup of G containing s.

Then

{sg1 , . . . , sgc}
is a UDS for G ⇐⇒

c⋂
i=1

Hgi = 1

⇐⇒ {Hg1, . . . ,Hgc}
is a base for G/H.

In particular, γu(G) 6 b(G,G/H).

Example

Let G = An for n > 8 even. Then log2n 6 γu(G) 6 2 log2n.

Proof of upper bound

Let s = (1 2 . . . k)(k + 1 k + 2 . . . n) where k ∈ {n2 − 1,
n
2 − 2} is odd.

Then H ∼= (Sk × Sn−k)∩ An is the only maximal subgroup of G containing s.

The action of An on An/H is the action of An on the set Ω of k-sets.

γu(An) 6 b(An, Ω) 6
⌈
logdn/ken

⌉
· (dn/ke − 1) 6 2 log2n.
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Classification of Finite 3
2-Generated Groups



G is 3
2-generated if for all x ∈ G \1 there exists y ∈ G such that G = 〈x, y〉

Guralnick & Kantor, 2000 Every finite simple group is 3
2 -generated.

Question 2 Which finite groups are 3
2 -generated?

Simple groups: Groups such that all proper quotients are trivial.

Perhaps: Groups such that all proper quotients are cyclic?
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(1 3)(2 4)

(1 4)(2 3)

(1 2 3)
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(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(2 4 3)
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Let G be a finite group.

Proposition

G is 3
2 -generated =⇒ every proper quotient of G is cyclic.

Proof

Let 1 6= N P G and fix 1 6= n ∈ N. Since G is 3
2 -generated, there exists y ∈ G

such that 〈n, y〉 = G.

In particular, 〈nN, yN〉 = G/N. Since nN is trivial in G/N, in fact, G/N = 〈yN〉.
So G/N is cyclic.

3
2 -Generation Conjecture (Breuer, Guralnick & Kantor, 2008)

G is 3
2 -generated ⇐⇒ every proper quotient of G is cyclic.
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Let G be a finite group.

3
2 -Generation Conjecture

G is 3
2 -generated ⇐⇒ every proper quotient of G is cyclic.

Guralnick It suffices to prove the conjecture for almost simple groups.

G is almost simple if T 6 G 6 Aut(T) for a nonabelian simple group T.

Example If T = An, then G ∈ {An, Sn} and G is 3
2 -generated (Piccard, 1939).

Theorem (H, 2017 & 2019+)

Let G be finite almost simple classical group. Then G is 3
2 -generated if and

only if every proper quotient of G is cyclic.
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Infinite 3
2-Generated Groups

joint with Casey Donoven



G is 3
2-generated if for all x ∈ G \1 there exists y ∈ G such that G = 〈x, y〉

Guralnick & Kantor, 2000 Every finite simple group is 3
2 -generated.

What about infinite groups?

Not all simple groups are finitely generated (example: A∞).

Not all finitely generated simple groups are 2-generated (Guba, 1986).

Question 3 Can we find some infinite 3
2 -generated groups?

Examples

1 Z is cyclic and therefore 3
2 -generated.

2 G is a Tarski monster if it is infinite but |H| = p when 1 < H < G.
Tarski monsters are simple and 3

2 -generated, and they exist for all
primes p > 1075 (Olshanskii, 1980).
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Thompson’s group V was the first finitely presented infinite simple group
to be discovered (alongside its relatives T and F′).

Let C be the Cantor space {0, 1}N. Then V acts on C by homeomorphisms.

...

[0, 1] =

C =

7→

Idea V acts on C ! Sn acts on {1, . . . , n}

Example V = 〈(U V) | disjoint basic open U, V〉 ! Sn = 〈(i j) | i 6= j〉

Theorem (Donoven & H, 2019)

Thompson’s group V is 3
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For m > 1, the Brin–Thompson groupmV acts on Cm and is simple.

Theorem (Donoven & H, 2019)

For m > 1, the group mV is 3
2 -generated.

For n > 2, the Higman–Thompson group Vn acts on Cn = {0, 1, . . . , n− 1}N.
If n is even, Vn is simple. If n is odd, V′n is simple and |Vn : V′n| = 2.

Theorem (Donoven & H, 2019)

For n > 2, the groups Vn and V′n are 3
2 -generated.

Let G be Vn, V′n or mV. For each x ∈ G \1 we construct y ∈ G s.t. G = 〈x, y〉.

Question
Is there a conjugacy class C of G such that for all x ∈ G \1 there exists y ∈ C
such that G = 〈x, y〉?
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Theorem (Burness & H, 2018 & 2019)
There are infinitely many finite simple groups G for which γu(G) = 2.

(Examples: Ap for primes p > 13, PSLn(q) for odd n, E8(q), the Monster.)

3
2 -Generation Conjecture

A finite group is 3
2 -generated if and only if every proper quotient is cyclic.

Theorem (H, 2017 & 2019+)

The 3
2 -Generation Conjecture holds for almost simple classical groups.

Theorem (Donoven & H, 2019)

The Thompson-like groups Vn, V′n and mV are 3
2 -generated.
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