Spread, Subgroups & Shintani Descent

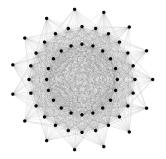
Scott Harper

University of Bristol

featuring work with Tim Burness and Robert Guralnick

Banff International Research Station

20 August 2021



Observation

For any finite dimensional vector space V, every nonzero vector is contained in a spanning set of minimal size d(V).

Observation

For any finite dimensional vector space V, every nonzero vector is contained in a spanning set of minimal size d(V).

Question

For which finite groups G is every nontrivial element contained in a generating set of minimal size d(G)?

Observation

For any finite dimensional vector space V, every nonzero vector is contained in a spanning set of minimal size d(V).

Question

For which finite groups G is every nontrivial element contained in a generating set of minimal size d(G)?

Theorem (Burness, Guralnick, H | 2021)

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

Let G be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \neq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \neq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

more intuitive phrasing

Every nontrivial element of G is contained in a generating set of size k if d(G) < k. We only need d(G/N) < k for all $1 \neq N \leq G$.

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \neq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

more intuitive phrasing

Every nontrivial element of G is contained in a generating set of size k if d(G) < k. We only need d(G/N) < k for all $1 \neq N \leq G$.

minimal by size vs minimal by inclusion

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \neq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

more intuitive phrasing

Every nontrivial element of G is contained in a generating set of size k if d(G) < k. We only need d(G/N) < k for all $1 \neq N \leq G$.

minimal by size vs minimal by inclusion

every nontrivial elt in a minimal gen set by size

$$\iff \begin{array}{c} d(G/N) < d(G) \\ \text{for all } 1 \neq N \triangleleft G \end{array}$$

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \neq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

more intuitive phrasing

Every nontrivial element of G is contained in a generating set of size k if d(G) < k. We only need d(G/N) < k for all $1 \neq N \leq G$.

minimal by size vs minimal by inclusion

every nontrivial elt in a minimal gen set by size

$$\iff \qquad \begin{array}{c} d(G/N) < d(G) \\ \text{for all } 1 \neq N \leqslant \end{array}$$

every nontrivial elt in a minimal gen set by inclusion

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \neq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

more intuitive phrasing

Every nontrivial element of G is contained in a generating set of size k if d(G) < k. We only need d(G/N) < k for all $1 \neq N \leq G$.

minimal by size vs minimal by inclusion

```
every nontrivial elt in a
minimal gen set by size
↓
every nontrivial elt in a
minimal gen set by inclusion
```

$$\Rightarrow \qquad d(G/N) < d(G)$$

for all $1 \neq N \leq G$

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \neq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

more intuitive phrasing

Every nontrivial element of G is contained in a generating set of size k if d(G) < k. We only need d(G/N) < k for all $1 \neq N \leq G$.

minimal by size vs minimal by inclusion

every nontrivial elt in a
minimal gen set by size
 \downarrow
every nontrivial elt in a
minimal gen set by inclusiond(G/N) < d(G)
for all $1 \neq N \triangleleft G$
 \Leftrightarrow Frat(G) = 1

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \neq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

more intuitive phrasing

Every nontrivial element of G is contained in a generating set of size k if d(G) < k. We only need d(G/N) < k for all $1 \neq N \leq G$.

minimal by size vs minimal by inclusion

every nontrivial elt in a minimal gen set by size ↓ every nontrivial elt in a minimal gen set by inclusion

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

• d(G) = 2

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985]

• d(G) = 2

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985] the theorem holds for such G [Acciarri, Lucchini | 2019]

• d(G) = 2

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985] the theorem holds for such G [Acciarri, Lucchini | 2019]

• d(G) = 2

here $p^k \leqslant G \leqslant p^k$: $GL_k(p)$ or $T^k \leqslant G \leqslant Aut(T) \wr S_k$

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985] the theorem holds for such G [Acciarri, Lucchini | 2019]

• d(G) = 2

here $p^k \leq G \leq p^k$:GL_k(p) or $T^k \leq G \leq Aut(T) \wr S_k$ reduction to almost simple $[\frac{1}{2}BGH '21]$

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985] the theorem holds for such G [Acciarri, Lucchini | 2019]

• d(G) = 2

here $p^k \leq G \leq p^k$:GL_k(p) or $T^k \leq G \leq Aut(T) \wr S_k$ reduction to almost simple $[\frac{1}{2}BGH '21]$

simple

[Guralnick, Kantor | 2000]

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985] the theorem holds for such G [Acciarri, Lucchini | 2019]

• d(G) = 2

here $p^k \leq G \leq p^k$:GL_k(p) or $T^k \leq G \leq Aut(T) \wr S_k$ reduction to almost simple $[\frac{1}{2}BGH '21]$

simple

[Guralnick, Kantor | 2000]

← extreme: d(G) = 2 but d(G/N) = 0 for all $1 \neq N \triangleleft G$

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985] the theorem holds for such G [Acciarri, Lucchini | 2019]

• d(G) = 2

here $p^k \leq G \leq p^k$:GL_k(p) or $T^k \leq G \leq \operatorname{Aut}(T) \wr S_k$ reduction to almost simplealmost simplesimple[Guralnick, Kantor | 2000]

 \frown extreme: d(G) = 2 but d(G/N) = 0 for all $1 \neq N \leq G$

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

"if" direction

Let G be a nonabelian group satisfying d(G/N) < d(G) for all $1 \neq N \leq G$.

■ d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985] the theorem holds for such G [Acciarri, Lucchini | 2019]

• d(G) = 2

here $p^k \leq G \leq p^k$: $GL_k(p)$ or $T^k \leq G \leq Aut(T) \wr S_k$ reduction to almost simple $[\frac{1}{2}BGH '21]$ almost simple $[\frac{1}{2}BGH '21, H '21, H '17, BGuest '13]$ simple[Guralnick, Kantor | 2000]

← extreme: d(G) = 2 but d(G/N) = 0 for all $1 \neq N \triangleleft G$

Let G be a finite 2-generated group.

Let G be a finite 2-generated group.

The **spread** of G is

 $\mathbf{s(G)} = \sup\{k \mid \forall g_1, \dots, g_k \in G \setminus 1 \ \exists h \in G \ \text{s.t.} \ \langle g_i, h \rangle = G \ \text{for all } i\}.$

Let G be a finite 2-generated group.

The **spread** of G is

 $\mathbf{s(G)} = \sup\{k \mid \forall g_1, \dots, g_k \in G \setminus 1 \ \exists h \in G \ \text{s.t.} \ \langle g_i, h \rangle = G \ \text{for all } i\}.$

Note $s(G) \ge 1$ iff every nontrivial element is contained in a generating pair.

Let G be a finite 2-generated group.

The **spread** of G is

 $\mathbf{s(G)} = \sup\{k \mid \forall g_1, \dots, g_k \in G \setminus 1 \ \exists h \in G \ \text{s.t.} \ \langle g_i, h \rangle = G \ \text{for all } i\}.$

Note $s(G) \ge 1$ iff every nontrivial element is contained in a generating pair.

Conjecture (Breuer, Guralnick, Kantor | 2008) We have $s(G) \ge 1$ if and only if G/N is cyclic for all $1 \ne N \le G$.

Let G be a finite 2-generated group.

The **spread** of G is

 $\mathbf{s}(\mathbf{G}) = \sup\{k \mid \forall g_1, \dots, g_k \in \mathbf{G} \setminus 1 \ \exists h \in \mathbf{G} \ \text{s.t.} \ \langle g_i, h \rangle = \mathbf{G} \ \text{for all } i\}.$

Note $s(G) \ge 1$ iff every nontrivial element is contained in a generating pair.

Conjecture (Breuer, Guralnick, Kantor | 2008) We have $s(G) \ge 1$ if and only if G/N is cyclic for all $1 \ne N \triangleleft G$.

Question (Brenner, Wiegold | 1975) For which G is s(G) = 1? Only finitely many?

Let G be a finite 2-generated group.

The **spread** of G is

 $\mathbf{s(G)} = \sup\{k \mid \forall g_1, \dots, g_k \in G \setminus 1 \ \exists h \in G \ \text{s.t.} \ \langle g_i, h \rangle = G \ \text{for all } i\}.$

Note $s(G) \ge 1$ iff every nontrivial element is contained in a generating pair.

Conjecture (Breuer, Guralnick, Kantor | 2008) We have $s(G) \ge 1$ if and only if G/N is cyclic for all $1 \ne N \triangleleft G$.

Question (Brenner, Wiegold | 1975) For which G is s(G) = 1? Only finitely many?

Theorem (Burness, Guralnick, H | 2021)

We have $s(G) \ge 1 \iff s(G) \ge 2 \iff G/N$ is cyclic for all $1 \ne N \leqslant G$.

Spread & Subgroups

"To study the **spread** of $G = \langle T, x \rangle$ with T simple and $x \in Aut(T)$, look at the maximal **subgroups** that elements of Tx are contained in."

Spread & Subgroups

Spread & Subgroups

Example

We'll explain why $s(G) \ge 1$ when $G = \Omega_{2m+1}(q)$ with q odd.

Example

We'll explain why $s(G) \ge 1$ when $G = \Omega_{2m+1}(q)$ with q odd.

Let
$$s = \begin{pmatrix} A \\ 1 \end{pmatrix}$$
 where A is irreducible on a minus-type 2*m*-space.

Example

We'll explain why $s(G) \ge 1$ when $G = \Omega_{2m+1}(q)$ with q odd.

Let $s = \begin{pmatrix} A \\ 1 \end{pmatrix}$ where A is irreducible on a minus-type 2*m*-space.

Then $H \cong O_{2m}^{-}(q)$ is the only maximal subgroup of G containing s.

Example

We'll explain why $s(G) \ge 1$ when $G = \Omega_{2m+1}(q)$ with q odd.

Let $s = \begin{pmatrix} A \\ 1 \end{pmatrix}$ where A is irreducible on a minus-type 2*m*-space.

Then $H \cong O_{2m}^{-}(q)$ is the only maximal subgroup of G containing s.

Let $1 \neq g \in G$. Then $\langle g, s^x \rangle = G$ iff $g \notin H^x$. Some x will work as $\bigcap_{x \in G} H^x = 1$.

Example

We'll explain why $s(G) \ge 1$ when $G = \Omega_{2m+1}(q)$ with q odd.

Let $s = \begin{pmatrix} A \\ 1 \end{pmatrix}$ where A is irreducible on a minus-type 2*m*-space.

Then $H \cong O_{2m}^{-}(q)$ is the only maximal subgroup of G containing s.

Let $1 \neq g \in G$. Then $\langle g, s^x \rangle = G$ iff $g \notin H^x$. Some x will work as $\bigcap_{x \in G} H^x = 1$.

Lemma (Guralnick, Kantor | 2000)

We have $s(G) \ge k$ if there exists $s \in G$ such that for all $1 \ne x \in G$

$$\sum_{\substack{I < \max G \\ s \in H}} \frac{|x^G \cap H|}{|x^G|} < \frac{1}{k}.$$

We'll explain why $s(G) \leq q^8$ when:

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_a^{2m+1}

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq \text{PSL}_n(q)$ simple classical group with natural module \mathbb{F}_q^n . If every element of T stabilises a 1-space, then $s(T) \leq q^8$.

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq PSL_n(q)$ simple classical group with natural module \mathbb{F}_q^n . If every element of T stabilises a 1-space, then $s(T) \leq q^8$.

(b) $G = \langle T, x \rangle$ with $T = \Omega_{2m+1}(q)$, x = field aut, q odd.

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq PSL_n(q)$ simple classical group with natural module \mathbb{F}_q^n . If every element of T stabilises a 1-space, then $s(T) \leq q^8$.

(b) $G = \langle T, x \rangle$ with $T = \Omega_{2m+1}(q)$, x = field aut, q odd.

Mysterious claim: Every element of G stabilises a 1-space of \mathbb{F}_q^{2m+1}

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq \text{PSL}_n(q)$ simple classical group with natural module \mathbb{F}_q^n . If every element of T stabilises a 1-space, then $s(T) \leq q^8$.

(b) $G = \langle T, x \rangle$ with $T = \Omega_{2m+1}(q)$, x = field aut, q odd.

Mysterious claim: Every element of G stabilises a 1-space of \mathbb{F}_q^{2m+1} (i.e. every element of G normalises the stabiliser in T of a 1-space of \mathbb{F}_q^{2m+1})

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq \text{PSL}_n(q)$ simple classical group with natural module \mathbb{F}_q^n and $x \in \text{Aut}(T)$. If every element of $\langle T, x \rangle$ stabilises a 1-space, then $s(\langle T, x \rangle) \leq q^8$.

(b) $G = \langle T, x \rangle$ with $T = \Omega_{2m+1}(q)$, x = field aut, q odd.

Mysterious claim: Every element of G stabilises a 1-space of \mathbb{F}_q^{2m+1} (i.e. every element of G normalises the stabiliser in T of a 1-space of \mathbb{F}_q^{2m+1})

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq \text{PSL}_n(q)$ simple classical group with natural module \mathbb{F}_q^n and $x \in \text{Aut}(T)$. If every element of $\langle T, x \rangle$ stabilises a 1-space, then $s(\langle T, x \rangle) \leq q^8$.

(b) $G = \langle T, x \rangle$ with $T = \Omega_{2m+1}(q)$, x = field aut, q odd.

Mysterious claim: Every element of G stabilises a 1-space of \mathbb{F}_q^{2m+1} (i.e. every element of G normalises the stabiliser in T of a 1-space of \mathbb{F}_q^{2m+1})

(c) $G = \langle T, x \rangle$ with $T = \Omega_{2m}^{-}(q)$, x = graph aut, q even.

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq \text{PSL}_n(q)$ simple classical group with natural module \mathbb{F}_q^n and $x \in \text{Aut}(T)$. If every element of $\langle T, x \rangle$ stabilises a 1-space, then $s(\langle T, x \rangle) \leq q^8$.

(b) $G = \langle T, x \rangle$ with $T = \Omega_{2m+1}(q)$, x = field aut, q odd.

Mysterious claim: Every element of G stabilises a 1-space of \mathbb{F}_q^{2m+1} (i.e. every element of G normalises the stabiliser in T of a 1-space of \mathbb{F}_q^{2m+1})

(c) $G = \langle T, x \rangle$ with $T = \Omega_{2m}^{-}(q)$, x = graph aut, q even. Mysterious claim: Every element of Tx stabilises a 1-space of \mathbb{F}_{q}^{2m}

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq \text{PSL}_n(q)$ simple classical group with natural module \mathbb{F}_q^n and $x \in \text{Aut}(T)$. If every element of $\langle T, x \rangle$ stabilises a 1-space, then $s(\langle T, x \rangle) \leq q^8$.

(b) $G = \langle T, x \rangle$ with $T = \Omega_{2m+1}(q)$, x = field aut, q odd.

Mysterious claim: Every element of G stabilises a 1-space of \mathbb{F}_q^{2m+1} (i.e. every element of G normalises the stabiliser in T of a 1-space of \mathbb{F}_q^{2m+1})

(c) $G = \langle T, x \rangle$ with $T = \Omega_{2m}^{-}(q)$, x = graph aut, q even.

Mysterious claim: Every element of *Tx* stabilises a 1-space of \mathbb{F}_q^{2m} (but there are irreducible elements in *T*)

We'll explain why $s(G) \leq q^8$ when:

(a) $G = \Omega_{2m+1}(q)$ with q odd

Standard fact: Every element of G stabilises a 1-space of \mathbb{F}_{q}^{2m+1}

Lemma (following: Guralnick, Shalev | 2003)

Fix $T \neq \text{PSL}_n(q)$ simple classical group with natural module \mathbb{F}_q^n and $x \in \text{Aut}(T)$. If every element of Tx stabilises a 1-space, then $s(\langle T, x \rangle) \leq q^8$.

(b) $G = \langle T, x \rangle$ with $T = \Omega_{2m+1}(q)$, x = field aut, q odd.

Mysterious claim: Every element of G stabilises a 1-space of \mathbb{F}_q^{2m+1} (i.e. every element of G normalises the stabiliser in T of a 1-space of \mathbb{F}_q^{2m+1})

(c) $G = \langle T, x \rangle$ with $T = \Omega_{2m}^{-}(q)$, x = graph aut, q even.

Mysterious claim: Every element of *Tx* stabilises a 1-space of \mathbb{F}_q^{2m} (but there are irreducible elements in *T*)

Theorem (H | 2021)

Fix q. For $k \ge 1$, let T_k be a finite simple classical group with "natural module" $V_k = \mathbb{F}_q^{n_k}$ and let $x_k \in \text{Aut}(T_k)$. Assume $|\langle T_k, x_k \rangle| \to \infty$. Then $s(\langle T_k, x_k \rangle)$ is bounded if and only if every element of $T_k x_k$ stabilises a 1-space of V_k .

Theorem (H | 2021)

Fix q. For $k \ge 1$, let T_k be a finite simple classical group with "natural module" $V_k = \mathbb{F}_q^{n_k}$ and let $x_k \in \text{Aut}(T_k)$. Assume $|\langle T_k, x_k \rangle| \to \infty$. Then $s(\langle T_k, x_k \rangle)$ is bounded if and only if every element of $T_k x_k$ stabilises a 1-space of V_k .

With previous work (e.g. [BGH | 2021] & [Guralnick, Shalev | 2003]) gives:

Theorem (H | 2021)

For $k \ge 1$, let T_k be a nonabelian finite simple group and let $x_k \in Aut(T_k)$. Assume $|\langle T_k, x_k \rangle| \to \infty$. Then $s(\langle T_k, x_k \rangle) \not\to \infty$ if and only if $\langle T_k, x_k \rangle$ has an infinite subsequence where one of the following holds

- $\langle T_i, x_i \rangle = S_{n_i}$
- $\langle T_i, x_i \rangle = A_{n_i}$ where each n_i is divisible by a fixed prime
- T_i is $\Omega_{2m_i+1}(q)$ (q odd) or $Sp_{2m_i}(q)$ (q even) for fixed q
- T_i is $PSL_{2m_i+1}^{\pm}(q)$ or $P\Omega_{2m_i}^{\pm}(q)$ for fixed q and x_i powering to a graph aut.

"To study the maximal **subgroups** that the elements of *Tx* are contained in, use **Shintani descent**."

Let X be a connected algebraic group.

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms.

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms. Then there is a bijection, the **Shintani map** of (X, σ_1, σ_2) ,

F: $\{X_{\sigma_1}\text{-classes in } X_{\sigma_1}\sigma_2\} \rightarrow \{X_{\sigma_2}\text{-classes in } X_{\sigma_2}\sigma_1\}.$

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms. Then there is a bijection, the **Shintani map** of (X, σ_1, σ_2) ,

F: $\{X_{\sigma_1}\text{-classes in } X_{\sigma_1}\sigma_2\} \rightarrow \{X_{\sigma_2}\text{-classes in } X_{\sigma_2}\sigma_1\}.$

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi =$ std Frobenius,

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms. Then there is a bijection, the **Shintani map** of (X, σ_1, σ_2) ,

F: $\{X_{\sigma_1}\text{-classes in } X_{\sigma_1}\sigma_2\} \rightarrow \{X_{\sigma_2}\text{-classes in } X_{\sigma_2}\sigma_1\}.$

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi$ = std Frobenius, **F**: { $\Omega_{2m+1}(q)$ -classes in $\Omega_{2m+1}(q)\varphi$ } \rightarrow { $\Omega_{2m+1}(p)$ -classes in $\Omega_{2m+1}(p)$ }.

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms. Then there is a bijection, the **Shintani map** of (X, σ_1, σ_2) ,

F: $\{X_{\sigma_1}\text{-classes in } X_{\sigma_1}\sigma_2\} \rightarrow \{X_{\sigma_2}\text{-classes in } X_{\sigma_2}\sigma_1\}.$

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi$ = std Frobenius, **F**: { $\Omega_{2m+1}(q)$ -classes in $\Omega_{2m+1}(q)\varphi$ } \rightarrow { $\Omega_{2m+1}(p)$ -classes in $\Omega_{2m+1}(p)$ }.

Proof (Deshpande, Kawanaka, Shintani)

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms. Then there is a bijection, the **Shintani map** of (X, σ_1, σ_2) ,

F: $\{X_{\sigma_1}\text{-classes in } X_{\sigma_1}\sigma_2\} \rightarrow \{X_{\sigma_2}\text{-classes in } X_{\sigma_2}\sigma_1\}.$

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi$ = std Frobenius, **F**: { $\Omega_{2m+1}(q)$ -classes in $\Omega_{2m+1}(q)\varphi$ } \rightarrow { $\Omega_{2m+1}(p)$ -classes in $\Omega_{2m+1}(p)$ }.

Proof (Deshpande, Kawanaka, Shintani)

$$\{(g, h) \in X\sigma_2 \times X\sigma_1 \mid [g, h] = 1\}/(\text{conj. by } X)$$

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms. Then there is a bijection, the **Shintani map** of (X, σ_1, σ_2) ,

F: $\{X_{\sigma_1}\text{-classes in } X_{\sigma_1}\sigma_2\} \rightarrow \{X_{\sigma_2}\text{-classes in } X_{\sigma_2}\sigma_1\}.$

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi$ = std Frobenius, **F**: { $\Omega_{2m+1}(q)$ -classes in $\Omega_{2m+1}(q)\varphi$ } \rightarrow { $\Omega_{2m+1}(p)$ -classes in $\Omega_{2m+1}(p)$ }.

Proof (Deshpande, Kawanaka, Shintani)

$$\{(g,h) \in X\sigma_2 \times X\sigma_1 \mid [g,h] = 1\}/(\text{conj. by } X)$$

 $\{(x\sigma_2, \sigma_1) \mid x \in X_{\sigma_1}\}/(\text{conj. by } X_{\sigma_1})$

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms. Then there is a bijection, the **Shintani map** of (X, σ_1, σ_2) ,

F: $\{X_{\sigma_1}\text{-classes in } X_{\sigma_1}\sigma_2\} \rightarrow \{X_{\sigma_2}\text{-classes in } X_{\sigma_2}\sigma_1\}.$

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi$ = std Frobenius, **F**: { $\Omega_{2m+1}(q)$ -classes in $\Omega_{2m+1}(q)\varphi$ } \rightarrow { $\Omega_{2m+1}(p)$ -classes in $\Omega_{2m+1}(p)$ }.

Proof (Deshpande, Kawanaka, Shintani)

$$\{(g,h) \in X\sigma_2 \times X\sigma_1 \mid [g,h] = 1\}/(\text{conj. by } X)$$

 $\{(x\sigma_2, \sigma_1) \mid x \in X_{\sigma_1}\}/(\text{conj. by } X_{\sigma_1}) \qquad \{(\sigma_2, y\sigma_1) \mid y \in X_{\sigma_2}\}/(\text{conj. by } X_{\sigma_2})$

Let X be a connected algebraic group.

Let $\sigma_1, \sigma_2 \colon X \to X$ be commuting Steinberg endomorphisms. Then there is a bijection, the **Shintani map** of (X, σ_1, σ_2) ,

F: $\{X_{\sigma_1}\text{-classes in } X_{\sigma_1}\sigma_2\} \rightarrow \{X_{\sigma_2}\text{-classes in } X_{\sigma_2}\sigma_1\}.$

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi$ = std Frobenius, **F**: { $\Omega_{2m+1}(q)$ -classes in $\Omega_{2m+1}(q)\varphi$ } \rightarrow { $\Omega_{2m+1}(p)$ -classes in $\Omega_{2m+1}(p)$ }.

Proof (Deshpande, Kawanaka, Shintani)

$$\{(g,h) \in X\sigma_2 \times X\sigma_1 \mid [g,h] = 1\}/(\text{conj. by } X)$$

 $\{(\mathbf{x}\sigma_{\mathbf{2}},\sigma_{\mathbf{1}}) \mid \mathbf{x} \in X_{\sigma_{\mathbf{1}}}\}/(\text{conj. by } X_{\sigma_{\mathbf{1}}}) \xrightarrow{\mathbf{F}} \{(\sigma_{2},\mathbf{y}\sigma_{\mathbf{1}}) \mid \mathbf{y} \in X_{\sigma_{2}}\}/(\text{conj. by } X_{\sigma_{2}})$

Theorem (H | 2021)

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi =$ std Frobenius,

 $\mathbf{F}: \{\Omega_{2m+1}(q)\text{-classes in } \Omega_{2m+1}(q)\varphi\} \to \{\Omega_{2m+1}(p)\text{-classes in } \Omega_{2m+1}(p)\}.$

Theorem (H | 2021)

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi =$ std Frobenius,

 $\mathbf{F} \colon \{\Omega_{2m+1}(q) \text{-classes in } \mathbf{\Omega}_{2m+1}(q)\varphi\} \to \{\Omega_{2m+1}(p) \text{-classes in } \mathbf{\Omega}_{2m+1}(p)\}.$

Let P be a φ -stable stabiliser of a totally singular 1-space. Then

Theorem (H | 2021)

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi =$ std Frobenius,

 $\mathbf{F} \colon \{\Omega_{2m+1}(q) \text{-classes in } \mathbf{\Omega}_{2m+1}(q)\varphi\} \to \{\Omega_{2m+1}(p) \text{-classes in } \mathbf{\Omega}_{2m+1}(p)\}.$

Let P be a φ -stable stabiliser of a totally singular 1-space. Then

the $\langle \Omega_{2m+1}(q), \varphi \rangle$ -conjugates of $\langle P_{\varphi^f}, \varphi \rangle$ that contain $x\varphi$ \longleftrightarrow the $\Omega_{2m+1}(p)$ -conjugates of P_{φ} that contain $F(x\varphi)$.

The following theorem builds on [Burness, Guest | 2013].

Theorem (H | 2021)

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi =$ std Frobenius,

 $\mathbf{F}: \{\Omega_{2m+1}(q) \text{-classes in } \boldsymbol{\Omega}_{2m+1}(\boldsymbol{q})\varphi\} \to \{\Omega_{2m+1}(p) \text{-classes in } \boldsymbol{\Omega}_{2m+1}(\boldsymbol{p})\}.$

Let P be a φ -stable stabiliser of a totally singular 1-space. Then

the $\langle \Omega_{2m+1}(q), \varphi \rangle$ -conjugates of $\langle P_{\varphi^f}, \varphi \rangle$ that contain $x\varphi \longrightarrow P_{\varphi}$ that contain $F(x\varphi)$.

Therefore, $x\varphi$ stabilises a totally singular 1-space if and only if $F(x\varphi)$ does.

The following theorem builds on [Burness, Guest | 2013].

Theorem (H | 2021)

Example

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi =$ std Frobenius,

 $\mathbf{F} \colon \{\Omega_{2m+1}(q) \text{-classes in } \mathbf{\Omega}_{2m+1}(q)\varphi\} \to \{\Omega_{2m+1}(p) \text{-classes in } \mathbf{\Omega}_{2m+1}(p)\}.$

Let P be a φ -stable stabiliser of a totally singular 1-space. Then

the $\langle \Omega_{2m+1}(q), \varphi \rangle$ -conjugates of $\langle P_{\varphi^f}, \varphi \rangle$ that contain $x\varphi \qquad \longleftrightarrow \qquad$ the $\Omega_{2m+1}(p)$ -conjugates of P_{φ} that contain $F(x\varphi)$.

Therefore, $x\varphi$ stabilises a totally singular 1-space if and only if $F(x\varphi)$ does.

Question

What about nonsingular 1-spaces? Here $Y = O_{2m}$ is disconnected.

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi$ = std Frobenius, **F**: { $\Omega_{2m+1}(q)$ -classes in $\Omega_{2m+1}(q)\varphi$ } \rightarrow { $\Omega_{2m+1}(p)$ -classes in $\Omega_{2m+1}(p)$ }. Write $G = \langle \Omega_{2m+1}(q), \varphi \rangle$ and $G_0 = \Omega_{2m+1}(p)$. Then

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi = \text{std Frobenius}$, $F: \{\Omega_{2m+1}(q)\text{-classes in }\Omega_{2m+1}(q)\varphi\} \rightarrow \{\Omega_{2m+1}(p)\text{-classes in }\Omega_{2m+1}(p)\}$. Write $G = \langle \Omega_{2m+1}(q), \varphi \rangle$ and $G_0 = \Omega_{2m+1}(p)$. Then the $\langle \Omega_{2m+1}(q), \varphi \rangle$ -conjugates of the $\Omega_{2m+1}(p)\text{-conjugates of}$ $N_G(O_{2m}^+(q))$ and $N_G(O_{2m}^-(q)) \leftrightarrow N_{G_0}(O_{2m}^+(p))$ and $N_{G_0}(O_{2m}^-(p))$ that contain $x\varphi$ that contain $F(x\varphi)$.

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi = \text{std Frobenius}$, $F: \{\Omega_{2m+1}(q)\text{-classes in }\Omega_{2m+1}(q)\varphi\} \rightarrow \{\Omega_{2m+1}(p)\text{-classes in }\Omega_{2m+1}(p)\}$. Write $G = \langle \Omega_{2m+1}(q), \varphi \rangle$ and $G_0 = \Omega_{2m+1}(p)$. Then the $\langle \Omega_{2m+1}(q), \varphi \rangle$ -conjugates of the $\Omega_{2m+1}(p)$ -conjugates of $N_G(O_{2m}^+(q))$ and $N_G(O_{2m}^-(q)) \longleftrightarrow N_{G_0}(O_{2m}^+(p))$ and $N_{G_0}(O_{2m}^-(p))$ that contain $x\varphi$ that contain $F(x\varphi)$.

Therefore, $x\varphi$ stabilises a nonsingular 1-space if and only if $F(x\varphi)$ does.

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi = \text{std Frobenius}$, $F: \{\Omega_{2m+1}(q)\text{-classes in }\Omega_{2m+1}(q)\varphi\} \rightarrow \{\Omega_{2m+1}(p)\text{-classes in }\Omega_{2m+1}(p)\}$. Write $G = \langle \Omega_{2m+1}(q), \varphi \rangle$ and $G_0 = \Omega_{2m+1}(p)$. Then the $\langle \Omega_{2m+1}(q), \varphi \rangle$ -conjugates of the $\Omega_{2m+1}(p)$ -conjugates of $N_G(O_{2m}^+(q))$ and $N_G(O_{2m}^-(q)) \longleftrightarrow N_{G_0}(O_{2m}^+(p))$ and $N_{G_0}(O_{2m}^-(p))$ that contain $x\varphi$ that contain $F(x\varphi)$.

Therefore, $x\varphi$ stabilises a nonsingular 1-space if and only if $F(x\varphi)$ does. It's **not true** that +-type corresponds to +-type and --type to --type.

For p odd, $q = p^f$, $X = \Omega_{2m+1}(\overline{\mathbb{F}}_p)$, $\sigma_1 = \varphi^f$, $\sigma_2 = \varphi$ = std Frobenius, **F**: { $\Omega_{2m+1}(q)$ -classes in $\Omega_{2m+1}(q)\varphi$ } \rightarrow { $\Omega_{2m+1}(p)$ -classes in $\Omega_{2m+1}(p)$ }. Write $G = \langle \Omega_{2m+1}(q), \varphi \rangle$ and $G_0 = \Omega_{2m+1}(p)$. Then the $\langle \Omega_{2m+1}(q), \varphi \rangle$ -conjugates of the $\Omega_{2m+1}(p)$ -conjugates of

 $\begin{array}{ccc} N_G(\mathsf{O}_{2m}^+(q)) \text{ and } N_G(\mathsf{O}_{2m}^-(q)) & \longleftrightarrow & \mathsf{N}_{G_0}(\mathsf{O}_{2m}^+(p)) \text{ and } \mathsf{N}_{G_0}(\mathsf{O}_{2m}^-(p)) \\ & \text{that contain } x\varphi & \text{that contain } F(x\varphi). \end{array}$

Therefore, $x\varphi$ stabilises a nonsingular 1-space if and only if $F(x\varphi)$ does. It's **not true** that +-type corresponds to +-type and --type to --type.

Theorem (H | 2021)

Let Y < X be closed σ_i -stable with $N_{X_{s\sigma_i}}(Y_{s\sigma_i}) = Y_{s\sigma_i}$ for $s \in N_X(Y^\circ)$. Then the $\langle X_{\sigma_1}, \sigma_2 \rangle$ -conjugates of the $\langle X_{\sigma_2}, \sigma_1 \rangle$ -conjugates of $\langle Y, \sigma_2 \rangle_{\sigma_1}^x$ as x ranges over $X \iff \langle Y, \sigma_1 \rangle_{\sigma_2}^x$ as x ranges over Xthat contain g that contain F(g).

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

Theorem (Burness, H | 2019)

Let G be a finite simple group.

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

Theorem (Burness, H | 2019)

Let G be a finite simple group. Then

• if G is alternating or sporadic, $\mu(G) \leqslant$ 3 and $\mu(G)$ known precisely

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

Theorem (Burness, H | 2019)

Let G be a finite simple group. Then

• if G is alternating or sporadic, $\mu(\mathsf{G})\leqslant$ 3 and $\mu(\mathsf{G})$ known precisely

■ μ(G) ≤ 7

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

Theorem (Burness, H | 2019)

Let G be a finite simple group. Then

- if G is alternating or sporadic, $\mu(G) \leqslant$ 3 and $\mu(G)$ known precisely
- $\mu(G) \leq 7$ with $\mu(G) > 3$ for only four *G*, but $\mu(G) = 3$ infinitely often.

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

Theorem (Burness, H | 2019)

Let G be a finite simple group. Then

- if G is alternating or sporadic, $\mu(G) \leqslant$ 3 and $\mu(G)$ known precisely
- $\mu(G) \leq 7$ with $\mu(G) > 3$ for only four *G*, but $\mu(G) = 3$ infinitely often.

Theorem (H | 2021)

Let G be a finite almost simple group.

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

Theorem (Burness, H | 2019)

Let G be a finite simple group. Then

- if G is alternating or sporadic, $\mu(G) \leqslant$ 3 and $\mu(G)$ known precisely
- $\mu(G) \leq 7$ with $\mu(G) > 3$ for only four *G*, but $\mu(G) = 3$ infinitely often.

Theorem (H | 2021)

Let G be a finite almost simple group. Then

• if soc(G) is alternating or sporadic, $\mu(G) \leq 3$ and $\mu(G)$ known precisely

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

Theorem (Burness, H | 2019)

Let G be a finite simple group. Then

- if G is alternating or sporadic, $\mu(G) \leqslant$ 3 and $\mu(G)$ known precisely
- $\mu(G) \leq 7$ with $\mu(G) > 3$ for only four *G*, but $\mu(G) = 3$ infinitely often.

Theorem (H | 2021)

Let G be a finite almost simple group. Then

- if soc(G) is alternating or sporadic, $\mu(G) \leq 3$ and $\mu(G)$ known precisely
- for all k there exists f such that $\mu(\mathsf{PSL}_2(2^f), f) \ge k$

For a finite group G, write $\mu(G) = \min_{s \in G} |\{H <_{\max} G \mid s \in H\}|$.

Theorem (Burness, H | 2019)

Let G be a finite simple group. Then

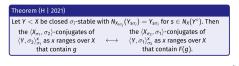
- if G is alternating or sporadic, $\mu(G) \leqslant$ 3 and $\mu(G)$ known precisely
- $\mu(G) \leq 7$ with $\mu(G) > 3$ for only four *G*, but $\mu(G) = 3$ infinitely often.

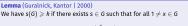
Theorem (H | 2021)

Let G be a finite almost simple group. Then

- if soc(G) is alternating or sporadic, $\mu(G) \leq 3$ and $\mu(G)$ known precisely
- for all k there exists f such that $\mu(PSL_2(2^f), f) \ge k$
- there are infinitely many nonsimple Lie type G such that $\mu(G) = 1$.

Spread, Subgroups & Shintani Descent





$$\sum_{\substack{H \leq \max_{s \in H} G \\ s \in H}} \frac{|x^G \cap H|}{|x^G|} < \frac{1}{k}$$

Theorem (Burness, Guralnick, H | 2021)

We have $s(G) \ge 1 \iff s(G) \ge 2 \iff G/N$ is cyclic for all $1 \ne N \leqslant G$.

Theorem (Burness, Guralnick, H | 2021)

Let *G* be a finite group. Every nontrivial element is contained in a generating set of minimal size if and only if d(G/N) < d(G) for all $1 \neq N \leq G$.

↑

"only if" direction

If every nontrivial element is in a generating set of size d(G), then for all $1 \leq N \leq G$ and $1 \neq n \in N$, we have $G = \langle n, g_1, \dots, g_{d(G)-1} \rangle$, so $G/N = \langle Ng_1, \dots, Ng_{d(G)-1} \rangle$, so d(G/N) < d(G).

d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985] the theorem holds for such G [Acciarri, Lucchini | 2019]