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A Generation Question

Observation
For any finite dimensional vector space V, every nonzero vector is
contained in a spanning set of minimal size d(V).

Question
For which finite groups G is every nontrivial element contained in a
generating set of minimal size d(G)?

Theorem (Burness, Guralnick, H | 2021)
Let G be a finite group. Every nontrivial element is contained in a generating
set of minimal size if and only if d(G/N) < d(G) for all 1 6= N P G.
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Let G be a finite group. Every nontrivial element is contained in a generating
set of minimal size if and only if d(G/N) < d(G) for all 1 6= N P G.

� “only if” direction
If every nontrivial element is in a generating set of size d(G), then
for all 1 6= N P G and 1 6= n ∈ N, we have G = 〈n, g1, . . . , gd(G)−1〉,
so G/N = 〈Ng1, . . . ,Ngd(G)−1〉, so d(G/N) < d(G).

� more intuitive phrasing
Every nontrivial element of G is contained in a generating set of
size k if d(G) < k. We only need d(G/N) < k for all 1 6= N P G.

� minimal by size vs minimal by inclusion

every nontrivial elt in a
minimal gen set by size

⇐⇒ d(G/N) < d(G)
for all 1 6= N P G

⇓ ⇐⇒ ⇓
every nontrivial elt in a

minimal gen set by inclusion
⇐⇒ Frat(G) = 1
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set of minimal size if and only if d(G/N) < d(G) for all 1 6= N P G.

“if” direction
Let G be a nonabelian group satisfying d(G/N) < d(G) for all 1 6= N P G.

� d(G) > 2

here G is a crown-based power [Dalla Volta, Lucchini | 1985]
the theorem holds for such G [Acciarri, Lucchini | 2019]

� d(G) = 2

here pk 6 G 6 pk:GLk(p) or Tk 6 G 6 Aut(T) o Sk
reduction to almost simple [ 12BGH ’21]
almost simple
simple [Guralnick, Kantor | 2000]

� extreme: d(G) = 2 but d(G/N) = 0 for all 1 6= N P G
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Spread

Let G be a finite 2-generated group.

The spread of G is

s(G) = sup{k | ∀g1, . . . , gk ∈ G\1 ∃h ∈ G s.t. 〈gi, h〉 = G for all i}.

Note s(G) > 1 iff every nontrivial element is contained in a generating pair.

Conjecture (Breuer, Guralnick, Kantor | 2008)
We have s(G) > 1 if and only if G/N is cyclic for all 1 6= N P G.

Question (Brenner, Wiegold | 1975)
For which G is s(G) = 1? Only finitely many?

Theorem (Burness, Guralnick, H | 2021)
We have s(G) > 1 ⇐⇒ s(G) > 2 ⇐⇒ G/N is cyclic for all 1 6= N P G.
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Spread & Subgroups

“To study the spread of G = 〈T, x〉 with T simple and x ∈ Aut(T),
look at the maximal subgroups that elements of Tx are contained in.”



Spread & Subgroups

Example
We’ll explain why s(G) > 1 when G = Ω2m+1(q) with q odd.

Let s =

(
A

1

)
where A is irreducible on a minus-type 2m-space.

Then H ∼= O−2m(q) is the only maximal subgroup of G containing s.

Let 1 6= g ∈ G. Then 〈g, sx〉 = G iff g 6∈ Hx. Some x will work as
⋂
x∈G H

x = 1.

Lemma (Guralnick, Kantor | 2000)
We have s(G) > k if there exists s ∈ G such that for all 1 6= x ∈ G

∑
H<maxG
s∈H

|xG ∩ H|
|xG|

<
1
k

.
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Example
We’ll explain why s(G) 6 q8 when:
(a) G = Ω2m+1(q) with q odd
Standard fact: Every element of G stabilises a 1-space of F2m+1

q

Lemma (following: Guralnick, Shalev | 2003)
Fix T 6= PSLn(q) simple classical group with natural module Fnq.
If every element of T stabilises a 1-space, then s(T) 6 q8.

(b) G = 〈T, x〉 with T = Ω2m+1(q), x = field aut, q odd.
Mysterious claim: Every element of G stabilises a 1-space of F2m+1

q
(i.e. every element of G normalises the stabiliser in T of a 1-space of F2m+1

q )

(c) G = 〈T, x〉 with T = Ω−2m(q), x = graph aut, q even.
Mysterious claim: Every element of Tx stabilises a 1-space of F2mq
(but there are irreducible elements in T)
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Theorem (H | 2021)
Fix q. For k > 1, let Tk be a finite simple classical groupwith “naturalmodule”
Vk = Fnkq and let xk ∈ Aut(Tk). Assume |〈Tk, xk〉| → ∞. Then s(〈Tk, xk〉) is
bounded if and only if every element of Tkxk stabilises a 1-space of Vk.

With previous work (e.g. [BGH | 2021] & [Guralnick, Shalev | 2003]) gives:

Theorem (H | 2021)
For k > 1, let Tk be a nonabelian finite simple group and let xk ∈ Aut(Tk).
Assume |〈Tk, xk〉| → ∞. Then s(〈Tk, xk〉) 6→ ∞ if and only if 〈Tk, xk〉 has an
infinite subsequence where one of the following holds

� 〈Ti, xi〉 = Sni
� 〈Ti, xi〉 = Ani where each ni is divisible by a fixed prime
� Ti is Ω2mi+1(q) (q odd) or Sp2mi

(q) (q even) for fixed q
� Ti is PSL±2mi+1(q) or PΩ±2mi

(q) for fixed q and xi powering to a graph aut.
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Subgroups & Shintani Descent

“To study the maximal subgroups that the elements of Tx are
contained in, use Shintani descent.”



Subgroups & Shintani Descent

Let X be a connected algebraic group.
Let σ1,σ2 : X → X be commuting Steinberg endomorphisms.
Then there is a bijection, the Shintani map of (X,σ1,σ2),

F : {Xσ1-classes in Xσ1σ2}→ {Xσ2-classes in Xσ2σ1}.

Example
For p odd, q = pf , X = Ω2m+1(Fp), σ1 = ϕf , σ2 = ϕ = std Frobenius,
F : {Ω2m+1(q)-classes in Ω2m+1(q)ϕ}→ {Ω2m+1(p)-classes in Ω2m+1(p)}.

Proof (Deshpande, Kawanaka, Shintani)

{(g, h) ∈ Xσ2 × Xσ1 | [g, h] = 1}/(conj. by X)

←→ ←→

{(xσ2,σ1) | x ∈ Xσ1}/(conj. by Xσ1 )
F−−→ {(σ2, yσ1) | y ∈ Xσ2}/(conj. by Xσ2 )
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The following theorem builds on [Burness, Guest | 2013].

Theorem (H | 2021)
Let Y < X be closed connected σi-stable with NXσi (Yσi) = Yσi . Then
the 〈Xσ1 ,σ2〉-conjugates of
〈Yσ1 ,σ2〉 that contain g

←→ the 〈Xσ2 ,σ1〉-conjugates of
〈Yσ2 ,σ1〉 that contain F(g).

Example
For p odd, q = pf , X = Ω2m+1(Fp), σ1 = ϕf , σ2 = ϕ = std Frobenius,

F : {Ω2m+1(q)-classes in Ω2m+1(q)ϕ}→ {Ω2m+1(p)-classes in Ω2m+1(p)}.

Let P be a ϕ-stable stabiliser of a totally singular 1-space. Then
the 〈Ω2m+1(q),ϕ〉-conjugates of
〈Pϕf ,ϕ〉 that contain xϕ

←→ the Ω2m+1(p)-conjugates of
Pϕ that contain F(xϕ).

Therefore, xϕ stabilises a totally singular 1-space if and only if F(xϕ) does.

Question
What about nonsingular 1-spaces? Here Y = O2m is disconnected.
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Application: Maximal Subgroups of Almost Simple Groups

For a finite group G, write µ(G) = mins∈G |{H <max G | s ∈ H}|.

Theorem (Burness, H | 2019)
Let G be a finite simple group.

Then
� if G is alternating or sporadic, µ(G) 6 3 and µ(G) known precisely
� µ(G) 6 7

with µ(G) > 3 for only four G, but µ(G) = 3 infinitely often.

Theorem (H | 2021)
Let G be a finite almost simple group.

Then
� if soc(G) is alternating or sporadic, µ(G) 6 3 and µ(G) known precisely
� for all k there exists f such that µ(PSL2(2f ). f) > k
� there are infinitely many nonsimple Lie type G such that µ(G) = 1.
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Spread, Subgroups & Shintani Descent

↓

Theorem (Burness, Guralnick, H | 2021)
We have s(G) > 1 ⇐⇒ s(G) > 2 ⇐⇒ G/N is cyclic for all 1 6= N P G.

↓

Theorem (Burness, Guralnick, H | 2021)
Let G be a finite group. Every nontrivial element is contained in a generating
set of minimal size if and only if d(G/N) < d(G) for all 1 6= N P G.

↑


