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Let G be a finite group. Every nontrivial element is contained in a generating
set of minimal size if and only if d(G/N) < d(G) forall1# N < G.

“if” direction
Let G be a nonabelian group satisfying d(G/N) < d(G) forall1# N < G.

= d(G) > 2
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the theorem holds for such G [Acciarri, Lucchini | 2019]
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here pf < G < p*:GLi(p) or T8 < G < Aut(T) 1S
reduction to almost simple [3BGH '21]
almost simple [1BGH "21, H "21, H '17, BGuest "13]
simple [Guralnick, Kantor | 2000]

1T extreme: d(G) =2 butd(G/N) =0forall1#AN <G
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Question (Brenner, Wiegold | 1975)
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Theorem (Burness, Guralnick, H | 2021)
We have s(G) > 1 <= 5s(G) >2 <= G/Niscyclicforall1# N <G.
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Example
We'll explain why s(G) > 1when G = Qyp11(q) with g odd.

A .. . .
Lets = ( 1 ) where A is irreducible on a minus-type 2m-space.

Then H = 0,,,(q) is the only maximal subgroup of G containings.

Let1+# g € G. Then (g,s*) = Giff g Z H*. Some x willwork as [, .; H* = 1.

Lemma (Guralnick, Kantor | 2000)
We have s(G) > k if there exists s € G such thatforall1#x € G

Z ‘XG ﬂH| < 1
x| ke

H<maxG
seH
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Theorem (H | 2021)

Fix g. For k > 1, let T, be a finite simple classical group with “natural module”
Vi = Fg" and let x, € Aut(Ty). Assume [(Ty, xg)| — oo. Then s((Ty, Xg)) is
bounded if and only if every element of T.x, stabilises a 1-space of V.

With previous work (e.g. [BGH | 2021] & [Guralnick, Shalev | 2003]) gives:

Theorem (H | 2021)

\.

For k > 1, let T, be a nonabelian finite simple group and let x, € Aut(Tg).

Assume |(Tg, X)| — oo. Then s({Tg, X)) # oo if and only if (Tg, X¢) has an
infinite subsequence where one of the following holds

= (T;, Xj) = Sn,

m (T;, xj) = Ap, where each n; is divisible by a fixed prime

= T;is Qom,11(q) (g odd) or Sp,,, (q) (g even) for fixed q

mT;is PSL2imi+1(q) or Pinm,»(Q) for fixed g and x; powering to a graph aut.

J
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Let X be a connected algebraic group.
Let 04, 07: X — X be commuting Steinberg endomorphisms.
Then there is a bijection, the Shintani map of (X, o1, 03),

F: {X,,-classes in X,,02} — {Xs,-classes in X,,01}.

Example
For podd, q=p/, X=Qmn1(Fp), o1=¢f, 02 = = std Frobenius,
F: {Qmy1(g)-classes in 92m+1(q)cp} — {QZm+1(p) classes in Qom+1(p) }-

Proof (Deshpande, Kawanaka, Shintani)

{(g, h) € Xo, x Xo1 | [g, h] = 1} /(conj. by X)
7N

{(x02, ) | X € X5, }/(conj. by Xp,) = {(02,ye1) | ¥ € X }/(conj. by X,,)



The following theorem builds on [Burness, Guest | 2013].

Theorem (H | 2021)

Let Y < X be closed connected oj-stable with Ny, (Y,,) = Yo;. Then
the (X,,, 02)-conjugates of the (X,,, o1)-conjugates of
(Y,,, 02) that contain g (Ys,, 01) that contain F(g).
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Theorem (H | 2021)

Let Y < X be closed connected o;-stable with NXJ,,(YU,.) =Y,,. Then
the (X,,, 02)-conjugates of the (X,,, o1)-conjugates of

(Y,,, 02) that contain g (Y,,, 01) that contain F(g).
Example
For podd, g=p/, X=Qum1(Fp), = ¢f, 0, = p = std Frobenius,

F: {Qmi1(g)-classes in Qomy1(q)p} — {sz+1(p)-classes in Qam+1(p) }-
Let P be a -stable stabiliser of a totally singular 1-space. Then

the (Qum+1(9), p)-conjugates of PN the Qum1(p)-conjugates of
(P, ) that contain xp P, that contain F(xy).

Therefore, x stabilises a totally singular 1-space if and only if F(x¢) does.

Question
What about nonsingular 1-spaces? Here Y = O, is disconnected.
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Example
For podd, q=p/, X=Qmn1(Fp), o1=¢f, 02 = = std Frobenius,

F: {Qmy1(g)-classes in Qomy1(q)p} — {sz+1(p)-classes in Qam+1(p) }-
Write G = (Qm+1(q9), ¢) and Go = Qom1(p). Then

the (m11(9), ¢)-conjugates of the Qym41(p)-conjugates of
N6(03,(a)) and N6(03(@)) ¢ Ney(03(p)) and No, (O (P))
that contain xp that contain F(xy).

Therefore, x stabilises a nonsingular 1-space if and only if F(x¢) does.
It's not true that +-type corresponds to +-type and —-type to —-type.

Theorem (H | 2021)

Let Y < X be closed oj-stable with N, (Yss;) = Yso, for s € Nx(Y°). Then

the (X,,, 02)-conjugates of the (X,,, o1)-conjugates of
(Y,00)% asxrangesover X <—  (Y,0q)5, as x ranges over X
that contain g that contain F(g).
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Theorem (Burness, H | 2019)
Let G be a finite simple group. Then

m if G is alternating or sporadic, x(G) < 3 and p(G) known precisely
® 1(G) < 7 with u(G) > 3 for only four G, but (G) = 3 infinitely often.

Theorem (H | 2021)
Let G be a finite almost simple group. Then

m if soc(G) is alternating or sporadic, 14(G) < 3 and u(G) known precisely
= for all k there exists f such that u(PSLy(2).f) > k




Application: Maximal Subgroups of Almost Simple Groups

For a finite group G, write 1£(G) = minseg |[{H <max G | S € H}|.

Theorem (Burness, H | 2019)
Let G be a finite simple group. Then

m if G is alternating or sporadic, x(G) < 3 and p(G) known precisely
® 1(G) < 7 with u(G) > 3 for only four G, but (G) = 3 infinitely often.

Theorem (H | 2021)
Let G be a finite almost simple group. Then

m if soc(G) is alternating or sporadic, 14(G) < 3 and u(G) known precisely
= for all k there exists f such that u(PSLy(2).f) > k
= there are infinitely many nonsimple Lie type G such that u(G) = 1.




Spread, Subgroups & Shintani Descent

Theorem (H | 2021) Lemma (Guralnick, Kantor | 2000)
Let Y < X be closed o;-stable with NX;,‘(Vsu,) = Y, fors € Nx(Y°). Then We have s(G) > kif there exists s € G such that for all1# x € G
the (X,, 02)-conjugates of the (X,,, o1)-conjugates of XSOH 1
(Y,02)% asxrangesoverX <  (Y,01)5, as x ranges over X x| S
that contain g that contain F(g). a0

Theorem (Burness, Guralnick, H | 2021)
We have s(G) > 1 <= s(G) >2 <= G/Niscyclicforall1# N <G.

i

Theorem (Burness, Guralnick, H | 2021)

Let G be a finite group. Every nontrivial element is contained in a generating
set of minimal size if and only if d(G/N) < d(G) forall1# N < G.

T

“only if” direction dG) >2
If every nontrivial element is in a generating set of size d(G), then
forall1 <N < Gand1#n e N,wehave G=(n,g,...,94c)-1) o O
s0G/N = (Ngy, ..., Nga(c)—1), 50 d(G/N) < d(G). the theorem holds for such 6 [Acciarri, Lucchini | 2019]

here G is a crown-based power [Dalla Volta, Lucchini | 1985]



