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Lemma
Let G be a group. Then

G has an invariable for all transitive actions of degree > 2
generating set G has a derangement.

Lemma (H | 2022)

Let Gy be a nonabelian finite simple group. Then

x is a totally deranged
element of G = (Go, a).

{x,x%} with x € Go and a € Aut(Go)

invariable generates Gg
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Nonexample
The group G = S, has no totally deranged elements.

Proof
Let x € G. It suffices to find a corefree maximal subgroup of G containing x.

X is not an n-cycle or two 3-cycles
— X E€Sp X Sp_k < Sp(witho <k < 3)

X is two Z-cycles
= X €5,215, < Sn

xisann-cycleandn =abwith1<a<b<n
— XGSQZSb<Sn

x is an n-cycle with n prime
= X € Ns,({x)) = AGL(n) < Sp O

So Go = A, has no invariable generating set {x, x?} with x € Gp and a € G.
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= {x,x%} invariably generates Go.
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(c) Go= PQf(q) withn=2fk>8 Y )
a
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a € Aut(Gp) induces a graph automorphism -~ o 4_<§ a

[s s'T] with |s| = ¢"/2 — 1
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