Invariable generation and totally deranged elements of simple groups

Scott Harper

University of Bristol

Simple Groups, Representations & Applications Isaac Newton Institute, Cambridge 29 July 2022

Every finite simple group can be generated by two elements.

Every finite simple group can be generated by two elements.

Example

Let $n \ge 8$ be even. Then $A_n = \langle x_1, x_2 \rangle$ where

Every finite simple group can be generated by two elements.

Example

Let $n \ge 8$ be even. Then $A_n = \langle x_1, x_2 \rangle$ where

 x_1 has cycle shape (n - 1, 1)

Every finite simple group can be generated by two elements.

Example

Let
$$n \ge 8$$
 be even. Then $A_n = \langle x_1, x_2 \rangle$ where

 x_1 has cycle shape (n - 1, 1)

 x_2 has cycle shape (n - k, k) for odd $k \in \{\frac{n}{2} - 1, \frac{n}{2} - 2\}$.

Observation

For all $g_1, g_2 \in A_n$ we still have $A_n = \langle x_1^{g_1}, x_2^{g_2} \rangle$.

Every finite simple group can be generated by two elements.

Example

Let
$$n \ge 8$$
 be even. Then $A_n = \langle x_1, x_2 \rangle$ where

 x_1 has cycle shape (n - 1, 1)

 x_2 has cycle shape (n - k, k) for odd $k \in \{\frac{n}{2} - 1, \frac{n}{2} - 2\}$.

Observation

For all $g_1, g_2 \in A_n$ we still have $A_n = \langle x_1^{g_1}, x_2^{g_2} \rangle$.

A group G is **invariably generated** by $\{x_1, \ldots, x_d\} \subseteq G$ if $G = \langle x_1^{g_1}, \ldots, x_d^{g_d} \rangle$ for all choices of $g_1, \ldots, g_d \in G$.

Theorem (Kantor, Lubotzky & Shalev | 2011 // Guralnick & Malle | 2012)

Every finite simple group can be invariably generated by two elements.

Theorem (Kantor, Lubotzky & Shalev | 2011 // Guralnick & Malle | 2012)

Every finite simple group can be invariably generated by two elements.

Example

Let $n \ge 8$ be even. Then A_n is invariably generated by $\{x_1, x_2\}$ where

 x_1 has cycle shape (n - 1, 1)

Theorem (Kantor, Lubotzky & Shalev | 2011 // Guralnick & Malle | 2012)

Every finite simple group can be invariably generated by two elements. Moreover, for every finite simple group *G* there exist elements $x_1, x_2 \in G$ such that $G = \langle x_1^{a_1}, x_2^{a_2} \rangle$ for all $a_1, a_2 \in Aut(G)$

Example

Let $n \ge 8$ be even. Then A_n is invariably generated by $\{x_1, x_2\}$ where

$$x_1$$
 has cycle shape $(n - 1, 1)$

Theorem (Kantor, Lubotzky & Shalev | 2011 // Guralnick & Malle | 2012)

Every finite simple group can be invariably generated by two elements. Moreover, for every finite simple group G there exist elements $x_1, x_2 \in G$ such

that $G = \langle x_1^{a_1}, x_2^{a_2} \rangle$ for all $a_1, a_2 \in Aut(G) \dots$ except for $G = P\Omega_8^+(2)!$

Example

Let $n \ge 8$ be even. Then A_n is invariably generated by $\{x_1, x_2\}$ where

$$x_1$$
 has cycle shape $(n - 1, 1)$

Theorem (Kantor, Lubotzky & Shalev | 2011 // Guralnick & Malle | 2012)

Every finite simple group can be invariably generated by two elements. Moreover, for every finite simple group G there exist elements $x_1, x_2 \in G$ such

that $G = \langle x_1^{a_1}, x_2^{a_2} \rangle$ for all $a_1, a_2 \in Aut(G) \dots$ except for $G = P\Omega_8^+(2)!$

Example

Let $n \ge 8$ be even. Then A_n is invariably generated by $\{x_1, x_2\}$ where

$$x_1$$
 has cycle shape $(n - 1, 1)$

 x_2 has cycle shape (n - k, k) for odd $k \in \{\frac{n}{2} - 1, \frac{n}{2} - 2\}$.

Question 1 (Garzoni | 2020)

Does there exist a nonabelian finite simple group G that has an invariable generating set $\{x, x^a\}$ where $x \in G$ and $a \in Aut(G)$?

Fix $G = GL_n(\mathbb{C})$ and $H = \{$ upper triangular matrices in $G \}$.

Fix $G = GL_n(\mathbb{C})$ and $H = \{$ upper triangular matrices in $G \}$. Every element of G is conjugate to an element of H

Fix $G = GL_n(\mathbb{C})$ and $H = \{$ upper triangular matrices in $G \}$.

Every element of G is conjugate to an element of H

 \implies G has no invariable generating set.

Fix $G = GL_n(\mathbb{C})$ and $H = \{$ upper triangular matrices in $G \}$.

Every element of G is conjugate to an element of H

 \implies G has no invariable generating set.

Every element of G is contained in a conjugate of H

Fix $G = GL_n(\mathbb{C})$ and $H = \{$ upper triangular matrices in $G \}$.

Every element of G is conjugate to an element of H

 \implies G has no invariable generating set.

Every element of G is contained in a conjugate of H

 \implies G has no derangements in its action on G/H.

Fix $G = GL_n(\mathbb{C})$ and $H = \{$ upper triangular matrices in $G \}$.

Every element of G is conjugate to an element of H

 \implies G has no invariable generating set.

Every element of G is contained in a conjugate of H

 \implies G has no derangements in its action on G/H.

Recall: $g \in Sym(\Omega)$ is a **derangement** if g fixes no point of Ω .

Fix $G = GL_n(\mathbb{C})$ and $H = \{$ upper triangular matrices in $G \}$.

Every element of G is conjugate to an element of H

 \implies G has no invariable generating set.

Every element of G is contained in a conjugate of H

 \implies G has no derangements in its action on G/H.

Recall: $g \in Sym(\Omega)$ is a **derangement** if g fixes no point of Ω .

Lemma	
Let G be a group. Then	
G has an invariable generating set ↔	for all transitive actions of G of degree ≥ 2 G has a derangement.

Fix $G = GL_n(\mathbb{C})$ and $H = \{$ upper triangular matrices in $G \}$.

Every element of G is conjugate to an element of H

 \implies G has no invariable generating set.

Every element of G is contained in a conjugate of H

 \implies G has no derangements in its action on G/H.

Recall: $g \in Sym(\Omega)$ is a **derangement** if g fixes no point of Ω .

Lemma	
Let G be a group. Then	
G has an invariable generating set ↔	for all transitive actions of G of degree ≥ 2 G has a derangement.

Theorem (Jordan | 1870)

Let G be a finite group acting transitively with degree at least 2. Then G has a derangement.

Let G be a finite group acting transitively with degree ≥ 2 . Then there exists an element of G that does not fix a point.

Let G be a finite group acting transitively with degree ≥ 2 . Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

Let G be a finite group acting transitively with degree ≥ 2 . Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

(a) Let $f \in \mathbb{Z}[X]$ be an irreducible polynomial of degree ≥ 2 . Then there exists a prime p such that f does not have a root modulo p.

Let G be a finite group acting transitively with degree \ge 2. Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

(a) Let f ∈ Z[X] be an irreducible polynomial of degree ≥ 2. Then there exists a prime p such that f does not have a root modulo p.
(b) Let X be a top. space with path connected cover p: C → X of degree ≥ 2. Then there exists f: S¹ → X that does not lift to C.

Let G be a finite group acting **transitively** with degree ≥ 2 . Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

(a) Let f ∈ Z[X] be an irreducible polynomial of degree ≥ 2. Then there exists a prime p such that f does not have a root modulo p.
(b) Let X be top. space with path connected cover p: C → X of degree ≥ 2. Then there exists f: S¹ → X that does not lift to C.

Let G be a finite group acting **transitively** with **degree** \ge **2**. Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

(a) Let f ∈ Z[X] be an irreducible polynomial of degree ≥ 2. Then there exists a prime p such that f does not have a root modulo p.
(b) Let X be top. space with path connected cover p: C → X of degree ≥ 2. Then there exists f: S¹ → X that does not lift to C.

Let G be a finite group acting **transitively** with **degree** \ge **2**. Then there **exists** an element of G that **does not** fix a point.

Theorem (Serre | 2000)

(a) Let f ∈ Z[X] be an irreducible polynomial of degree ≥ 2. Then there exists a prime p such that f does not have a root modulo p.
(b) Let X be top. space with path connected cover p: C → X of degree ≥ 2. Then there exists f: S¹ → X that does not lift to C.

Let G be a finite group acting transitively with degree \ge 2. Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

(a) Let f ∈ Z[X] be an irreducible polynomial of degree ≥ 2. Then there exists a prime p such that f does not have a root modulo p.
(b) Let X be a top. space with path connected cover p: C → X of degree ≥ 2. Then there exists f: S¹ → X that does not lift to C.

Let G be a finite group acting transitively with degree \ge 2. Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

(a) Let f ∈ Z[X] be an irreducible polynomial of degree ≥ 2. Then there exists a prime p such that f does not have a root modulo p.
(b) Let X be a top. space with path connected cover p: C → X of degree ≥ 2. Then there exists f: S¹ → X that does not lift to C.

Lots of recent work here, often reducing to faithful primitive actions of **almost simple groups**: G with $G_0 \leq G \leq \operatorname{Aut}(G_0)$ for nonabelian simple G_0 .

Let G be a finite group acting transitively with degree \ge 2. Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

(a) Let f ∈ Z[X] be an irreducible polynomial of degree ≥ 2. Then there exists a prime p such that f does not have a root modulo p.
(b) Let X be a top. space with path connected cover p: C → X of degree ≥ 2. Then there exists f: S¹ → X that does not lift to C.

Lots of recent work here, often reducing to faithful primitive actions of **almost simple groups**: G with $G_0 \leq G \leq \operatorname{Aut}(G_0)$ for nonabelian simple G_0 .

Question 2

Does there exist an almost simple group *G* with a **totally deranged element**: an element that is a derangement in every faithful primitive action of *G*?

Does there exist a nonabelian finite simple group G that has an invariable generating set $\{x, x^a\}$ where $x \in G$ and $a \in Aut(G)$?

Question 2

Does there exist an almost simple group *G* with a totally deranged element: an element that is a derangement in every faithful primitive action of *G*?

Does there exist a nonabelian finite simple group G that has an invariable generating set $\{x, x^a\}$ where $x \in G$ and $a \in Aut(G)$?

Question 2

Does there exist an almost simple group *G* with a totally deranged element: an element that is a derangement in every faithful primitive action of *G*?

Lemma		
Let G be a group. Then		
G has an invariable generating set	\iff	for all transitive actions of degree ≥ 2 <i>G</i> has a derangement.

Does there exist a nonabelian finite simple group G that has an invariable generating set $\{x, x^a\}$ where $x \in G$ and $a \in Aut(G)$?

Question 2

Does there exist an almost simple group *G* with a totally deranged element: an element that is a derangement in every faithful primitive action of *G*?

Lemma

Let G be a group. Then

G has an invariable generating set

$$\iff$$

for all transitive actions of degree ≥ 2 *G* has a derangement.

Lemma (H | 2022)

Let G_0 be a nonabelian finite simple group. Then

$$\begin{array}{ll} \{x,x^a\} \text{ with } x\in G_0 \text{ and } a\in \operatorname{Aut}(G_0) & \Longrightarrow & x \text{ is a totally deranged} \\ & \text{ invariable generates } G_0 & \Longrightarrow & \text{ element of } G=\langle G_0,a\rangle. \end{array}$$

Does there exist a nonabelian finite simple group G that has an invariable generating set $\{x, x^a\}$ where $x \in G$ and $a \in Aut(G)$?

Question 2

Does there exist an almost simple group *G* with a totally deranged element: an element that is a derangement in every faithful primitive action of *G*?

Lemma

Let G be a group. Then

G has an invariable generating set

$$\iff$$

for all transitive actions of degree ≥ 2 *G* has a derangement.

Lemma (H | 2022)

Let G_0 be a nonabelian finite simple group. Then

$$\{x, x^a\}$$
 with $x \in G_0$ and $a \in Aut(G_0)$ \iff x is a totally deranged element of $G = \langle G_0, a \rangle$.

Nonexample

Nonexample

The group $G = S_n$ has no totally deranged elements.

The group $G = S_n$ has no totally deranged elements.

Proof

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$.

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x.

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x.

x is not an *n*-cycle or two $\frac{n}{2}$ -cycles

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x.

x is not an *n*-cycle or two $\frac{n}{2}$ -cycles

 $\implies x \in \mathsf{S}_k imes \mathsf{S}_{n-k} < \mathsf{S}_n$ (with $0 < k < rac{n}{2}$)

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x. x is not an n-cycle or two $\frac{n}{2}$ -cycles $\implies x \in S_k \times S_{n-k} < S_n$ (with $0 < k < \frac{n}{2}$) x is two $\frac{n}{2}$ -cycles

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x. x is not an n-cycle or two $\frac{n}{2}$ -cycles $\implies x \in S_k \times S_{n-k} < S_n$ (with $0 < k < \frac{n}{2}$) x is two $\frac{n}{2}$ -cycles $\implies x \in S_{n/2} \wr S_2 < S_n$

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x.

x is not an *n*-cycle or two $\frac{n}{2}$ -cycles

$$\implies x \in \mathsf{S}_k imes \mathsf{S}_{n-k} < \mathsf{S}_n$$
 (with 0 $< k < rac{n}{2}$)

x is two $\frac{n}{2}$ -cycles

$$\implies x \in S_{n/2} \wr S_2 < S_n$$

x is an *n*-cycle and n = ab with $1 < a \leq b < n$

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x.

 $x \text{ is not an } n\text{-cycle or two } \frac{n}{2}\text{-cycles}$ $\implies x \in S_k \times S_{n-k} < S_n \text{ (with } 0 < k < \frac{n}{2}\text{)}$ $x \text{ is two } \frac{n}{2}\text{-cycles}$ $\implies x \in S_{n/2} \wr S_2 < S_n$ $x \text{ is an } n\text{-cycle and } n = ab \text{ with } 1 < a \leq b < n$ $\implies x \in S_a \wr S_b < S_n$

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x. x is not an n-cycle or two $\frac{n}{2}$ -cycles

$$\implies x \in \mathsf{S}_k imes \mathsf{S}_{n-k} < \mathsf{S}_n$$
 (with 0 $< k < rac{n}{2}$)

x is two $\frac{n}{2}$ -cycles

$$\implies x \in S_{n/2} \wr S_2 < S_n$$

x is an *n*-cycle and n = ab with $1 < a \leq b < n$

$$\implies x \in S_a \wr S_b < S_n$$

x is an *n*-cycle with *n* prime

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x. x is not an *n*-cycle or two $\frac{n}{2}$ -cycles $\implies x \in S_k \times S_{n-k} < S_n$ (with $0 < k < \frac{n}{2}$) x is two $\frac{n}{2}$ -cycles $\implies x \in S_{n/2} \wr S_2 < S_n$ x is an *n*-cycle and n = ab with $1 < a \le b < n$ $\implies x \in S_n \wr S_h < S_n$ x is an *n*-cycle with *n* prime $\implies x \in N_{S_n}(\langle x \rangle) = AGL_1(n) < S_n$

The group $G = S_n$ has no totally deranged elements.

Proof

Let $x \in G$. It suffices to find a corefree maximal subgroup of G containing x. x is not an *n*-cycle or two $\frac{n}{2}$ -cycles $\implies x \in S_k \times S_{n-k} < S_n$ (with $0 < k < \frac{n}{2}$) x is two $\frac{n}{2}$ -cycles $\implies x \in S_{n/2} \wr S_2 < S_n$ x is an *n*-cycle and n = ab with $1 < a \le b < n$ $\implies x \in S_n \wr S_h < S_n$ x is an *n*-cycle with *n* prime $\implies x \in N_{S_n}(\langle x \rangle) = AGL_1(n) < S_n$

So $G_0 = A_n$ has no invariable generating set $\{x, x^a\}$ with $x \in G_0$ and $a \in G$.

$$G=\mathrm{O}^+_{\mathrm{16}}(q)$$
 and $G_0=\Omega^+_{\mathrm{16}}(q)$ with $q=2^f$

$$egin{aligned} \mathsf{G} &= \mathsf{O}^+_{\mathsf{16}}(q) ext{ and } \mathsf{G}_0 = \Omega^+_{\mathsf{16}}(q) ext{ with } q = 2^f \ a \in \mathsf{O}^+_{\mathsf{16}}(q) \setminus \Omega^+_{\mathsf{16}}(q) \end{aligned}$$

$$\mathsf{G}=\mathsf{O}^+_{\mathsf{16}}(q)$$
 and $\mathsf{G}_0=\Omega^+_{\mathsf{16}}(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q)$ [e.g. a transvection, with Jordan form (J_2, J_1^{14})]

$${\sf G}={\sf O}_{\sf 16}^+(q)$$
 and ${\sf G}_0=\Omega_{\sf 16}^+(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q)$ [e.g. a transvection, with Jordan form (J_2, J_1^{14})] $x = \begin{bmatrix} s \\ s^{-T} \end{bmatrix} \in G_0$ stabilising $U \oplus U^*$ for a totally singular 8-space U

$${\sf G}={\sf O}_{\sf 16}^+(q)$$
 and ${\sf G}_0=\Omega_{\sf 16}^+(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

$${ extsf{G}}={ extsf{O}}^+_{ extsf{16}}(q)$$
 and ${ extsf{G}}_0=\Omega^+_{ extsf{16}}(q)$ with $q=2^f$

- $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$
 - \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022)

Every proper subgroup of G that contains x is G₀ or is contained in one of

$${\sf G}={\sf O}_{\sf 16}^+(q)$$
 and ${\sf G}_0=\Omega_{\sf 16}^+(q)$ with $q=2^f$

- $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$
 - \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G₀ or is contained in one of G_U

$${\sf G}={\sf O}_{\sf 16}^+(q)$$
 and ${\sf G}_0=\Omega_{\sf 16}^+(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G_0 or is contained in one of G_U G_{U^*}

$${\sf G}={\sf O}_{\sf 16}^+(q)$$
 and ${\sf G}_0=\Omega_{\sf 16}^+(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G_0 or is contained in one of $G_U \quad G_{U^*} \quad G_{U \oplus U^*}$

$${\sf G}={\sf O}_{\sf 16}^+(q)$$
 and ${\sf G}_0=\Omega_{\sf 16}^+(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G_0 or is contained in one of $G_U \quad G_{U^*} \quad G_{U \oplus U^*} \quad O_8^+(q^2). 2 \quad \text{GU}_8(q). 2.$

$${\sf G}={\sf O}_{\sf 16}^+(q)$$
 and ${\sf G}_0=\Omega_{\sf 16}^+(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G_0 or is contained in one of $G_U \quad G_{U^*} \quad G_{U \oplus U^*} \quad O_8^+(q^2). 2 \quad \text{GU}_8(q). 2.$ (None are conjugate to themselves or each other under an element of $G \setminus G_0$.)

$${ extsf{G}}={ extsf{O}}^+_{ extsf{16}}(q)$$
 and ${ extsf{G}}_0=\Omega^+_{ extsf{16}}(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G_0 or is contained in one of $G_U \quad G_{U^*} \quad G_{U \oplus U^*} \quad O_8^+(q^2). 2 \quad GU_8(q). 2.$ (None are conjugate to themselves or each other under an element of $G \setminus G_0$.)

All subgroups of G containing x are contained in G_0

$${ extsf{G}}={ extsf{O}}^+_{ extsf{16}}(q)$$
 and ${ extsf{G}}_0=\Omega^+_{ extsf{16}}(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G_0 or is contained in one of $G_U \quad G_{U^*} \quad G_{U \oplus U^*} \quad O_8^+(q^2). 2 \quad GU_8(q). 2.$ (None are conjugate to themselves or each other under an element of $G \setminus G_0$.)

All subgroups of G containing x are contained in G_0

 \implies x is a totally deranged element of G.

$${ extsf{G}}={ extsf{O}}^+_{ extsf{16}}(q)$$
 and ${ extsf{G}}_0=\Omega^+_{ extsf{16}}(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G_0 or is contained in one of $G_U \quad G_{U^*} \quad G_{U \oplus U^*} \quad O_8^+(q^2). 2 \quad \text{GU}_8(q). 2.$ (None are conjugate to themselves or each other under an element of $G \setminus G_0$.)

All subgroups of G containing x are contained in G_0 \implies x is a totally deranged element of G.

For all $H < G_0$ and $g \in G_0$, if $x \in H$ then $x^{ag} \not\in H$

$${ extsf{G}}={ extsf{O}}^+_{ extsf{16}}(q)$$
 and ${ extsf{G}}_0=\Omega^+_{ extsf{16}}(q)$ with $q=2^f$

 $a \in O_{16}^+(q) \setminus \Omega_{16}^+(q) \qquad \left[\text{e.g. a transvection, with Jordan form } (J_2, J_1^{14})\right]$ $x = \left[\begin{array}{c} s \\ s^{-T} \end{array} \right] \in G_0 \text{ stabilising } U \oplus U^* \text{ for a totally singular 8-space } U$

 \frown Singer cycle s transitively permutes the q^8-1 vectors of $U\setminus 0$

Proposition (H | 2022) Every proper subgroup of G that contains x is G_0 or is contained in one of $G_U \quad G_{U^*} \quad G_{U \oplus U^*} \quad O_8^+(q^2). 2 \quad \text{GU}_8(q). 2.$ (None are conjugate to themselves or each other under an element of $G \setminus G_0$.)

All subgroups of G containing x are contained in G_0

 \implies x is a totally deranged element of G.

For all $H < G_0$ and $g \in G_0$, if $x \in H$ then $x^{ag} \notin H$ $\implies \{x, x^a\}$ invariably generates G_0 .

Let G_0 be a nonabelian finite simple group. The following are equivalent

Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)

Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c) $G_0 = P\Omega_n^+(q)$ with $n = 2^k \ge 8$

Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)
$$G_0 = P\Omega_n^+(q)$$
 with $n = 2^k \ge 8$

Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)
$$G_0 = P\Omega_n^+(q)$$
 with $n = 2^k \ge 8$

Х

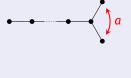
Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)
$$G_0 = P\Omega_n^+(q)$$
 with $n = 2^k \ge 8$

$$= \begin{bmatrix} s \\ s^{-T} \end{bmatrix} \text{ with } |s| = q^{n/2} - 1$$



Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)
$$G_0 = P\Omega_n^+(q)$$
 with $n = 2^k \ge 8$

 $a \in \operatorname{Aut}(G_0)$ induces a graph automorphism

$$x = \begin{bmatrix} s \\ s^{-T} \end{bmatrix}$$
 with $|s| = q^{n/2} - 1$

01

 $\mathbf{x} =$

Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)
$$G_0 = P\Omega_n^+(q)$$
 with $n = 2^k \ge 8$

$$\begin{cases} \begin{bmatrix} s \\ s^{-T} \end{bmatrix} & \text{with } |s| = q^{n/2} - 1 \\ \begin{bmatrix} s & & \\ & s^{-T} \end{bmatrix} & \text{with } |s| = q^{n/4} + 1 \& q \text{ odd} \end{cases}$$
 or a small power.

Let G_0 be a nonabelian finite simple group. The following are equivalent

(a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)
$$G_0 = P\Omega_n^+(q)$$
 with $n = 2^k \ge 8$

$$x = \begin{cases} \begin{bmatrix} s \\ s^{-T} \end{bmatrix} & \text{with } |s| = q^{n/2} - 1 \\ \begin{bmatrix} s \\ s^{-T} \end{bmatrix} & \text{with } |s| = q^{n/4} + 1 \& q \text{ odd} \end{cases}$$
 or a small power.

Let G_0 be a nonabelian finite simple group. The following are equivalent (a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0 (b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)
$$G_0 = \begin{cases} P\Omega_n^+(q) & \text{with } n = 2^k \ge 8\\ Sp_4(q) & \text{with } n = 4 \& q \text{ even} \end{cases}$$

$$x = \begin{cases} \begin{bmatrix} s \\ s^{-T} \end{bmatrix} & \text{with } |s| = q^{n/2} - 1 \\ \begin{bmatrix} s \\ s^{-T} \end{bmatrix} & \text{with } |s| = q^{n/4} + 1 \& q \text{ odd} \end{cases}$$
 or a small power.

Let G_0 be a nonabelian finite simple group. The following are equivalent (a) $\{x, x^a\}$ with $x \in G_0$ and $a \in Aut(G_0)$ invariably generates G_0

(b) x is a totally deranged element of $G = \langle G_0, a \rangle$

(c)
$$G_0 = \begin{cases} P\Omega_n^+(q) & \text{with } n = 2^k \ge 8 \\ Sp_4(q) & \text{with } n = 4 \& q \text{ even} \end{cases}$$

tomorphism
$$e^{1/2} - 1$$
 or a small power.

$$x = \begin{cases} \begin{bmatrix} s \\ s^{-T} \end{bmatrix} & \text{with } |s| = q^{n/2} - 1 \\ \begin{bmatrix} s & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix} & \text{with } |s| = q^{n/4} + 1 \& q \text{ odd} \end{cases}$$