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Theorem (Steinberg | 1962 + CFSG)
Every finite simple group can be generated by two elements.

Example
Let n > 8 be even. Then An = 〈x1, x2〉 where

x1 has cycle shape (n− 1, 1)

x2 has cycle shape (n− k, k) for odd k ∈ {n2 − 1, n2 − 2}.

Observation
For all g1, g2 ∈ An we still have An = 〈xg1

1 , xg2
2 〉.

A group G is invariably generated by {x1, . . . , xd} ⊆ G if G = 〈xg1
1 , . . . , xgdd 〉

for all choices of g1, . . . , gd ∈ G.
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x1 has cycle shape (n− 1, 1)

x2 has cycle shape (n− k, k) for odd k ∈ {n2 − 1, n2 − 2}.

Question 1 (Garzoni | 2020)
Does there exist a nonabelian finite simple group G that has an invariable
generating set {x, xa} where x ∈ G and a ∈ Aut(G)?
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Example
Fix G = GLn(C) and H = {upper triangular matrices in G}.

Every element of G is conjugate to an element of H
=⇒ G has no invariable generating set.

Every element of G is contained in a conjugate of H
=⇒ G has no derangements in its action on G/H.

Recall: g ∈ Sym(Ω) is a derangement if g fixes no point of Ω.

Lemma
Let G be a group. Then

G has an invariable
generating set ⇐⇒ for all transitive actions of G of degree > 2

G has a derangement.

Theorem (Jordan | 1870)
Let G be a finite group acting transitively with degree at least 2.
Then G has a derangement.
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Theorem (Jordan | 1870)
Let G be a finite group acting transitively with degree > 2.
Then there exists an element of G that does not fix a point.

Theorem (Serre | 2000)

(a) Let f ∈ Z[X] be an irreducible polynomial of degree > 2.
Then there exists a prime p such that f does not have a root modulo p.

(b) Let X be a top. space with path connected cover p : C→ X of degree> 2.
Then there exists f : S1 → X that does not lift to C.

Lots of recent work here, often reducing to faithful primitive actions of
almost simple groups: G with G0 6 G 6 Aut(G0) for nonabelian simple G0.

Question 2
Does there exist an almost simple group G with a totally deranged element:
an element that is a derangement in every faithful primitive action of G?
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Question 2
Does there exist an almost simple group G with a totally deranged element:
an element that is a derangement in every faithful primitive action of G?
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Let G be a group. Then

G has an invariable
generating set ⇐⇒ for all transitive actions of degree > 2

G has a derangement.

Lemma (H | 2022)
Let G0 be a nonabelian finite simple group. Then

{x, xa} with x ∈ G0 and a ∈ Aut(G0)
invariable generates G0

=⇒ x is a totally deranged
element of G = 〈G0, a〉.
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Nonexample

The group G = Sn has no totally deranged elements.

Proof

Let x ∈ G. It su�ces to find a corefree maximal subgroup of G containing x.

x is not an n-cycle or two n
2 -cycles

=⇒ x ∈ Sk × Sn−k < Sn (with 0 < k < n
2 )

x is two n
2 -cycles

=⇒ x ∈ Sn/2 o S2 < Sn
x is an n-cycle and n = ab with 1 < a 6 b < n

=⇒ x ∈ Sa o Sb < Sn
x is an n-cycle with n prime

=⇒ x ∈ NSn(〈x〉) = AGL1(n) < Sn

So G0 = An has no invariable generating set {x, xa} with x ∈ G0 and a ∈ G.
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Example

G = O+
16(q) and G0 = Ω+

16(q) with q = 2f

a ∈ O+
16(q) \ Ω+

16(q)

[
e.g. a transvection, with Jordan form (J2, J14

1 )
]

x =

[
s
s–T

]
∈ G0 stabilising U⊕ U∗ for a totally singular 8-space U

� Singer cycle s transitively permutes the q8 − 1 vectors of U \ 0

Proposition (H | 2022)
Every proper subgroup of G that contains x is G0 or is contained in one of

GU GU∗ GU⊕U∗ O+
8 (q2). 2 GU8(q). 2.

(None are conjugate to themselves or each other under an element of G\G0.)

All subgroups of G containing x are contained in G0
=⇒ x is a totally deranged element of G.

For all H < G0 and g ∈ G0, if x ∈ H then xag 6∈ H
=⇒ {x, xa} invariably generates G0.
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