Generating finite and infinite simple groups

Scott Harper

University of Bristol

Groups St Andrews University of Newcastle 31 July 2022

the finite

Theorem (Steinberg | 1962)

Every finite simple group can be generated by two elements.

Every finite simple group can be generated by two elements.

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where

x = (12n)

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where $\sqrt{k} \in \{\frac{n}{2} - 1, \frac{n}{2} - 2\}$ is odd x = (12n) $y = (1 \dots k)(k+1 \dots n)$

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where $\sqrt{k} \in \{\frac{n}{2} - 1, \frac{n}{2} - 2\}$ is odd x = (12n) $y = (1 \dots k)(k+1 \dots n)$

Proof $\langle x, y \rangle$ is ...

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where $y = (1 \dots k)(k+1 \dots n)$ is odd $y = (1 \dots k)(k+1 \dots n)$

Proof

 $\langle x, y \rangle$ is ...

transitive: x moves points between the orbits of y

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where $y = (1 \dots k)(k+1 \dots n)$ is odd $y = (1 \dots k)(k+1 \dots n)$

Proof

 $\langle x, y \rangle$ is ...

transitive: x moves points between the orbits of y primitive: k and n - k are coprime [exercise]

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where $y = (1 \dots k)(k+1 \dots n)$ is odd $y = (1 \dots k)(k+1 \dots n)$

Proof

 $\langle x, y \rangle$ is ...

transitive: x moves points between the orbits of y primitive: k and n - k are coprime [exercise] A_n : no other primitive subgroup has a k-cycle as $k < \frac{n}{2}$ [Marggraf | 1892]

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where x = (12n) x = (12n) $k \in \{\frac{n}{2} - 1, \frac{n}{2} - 2\}$ is odd $y = (1 \dots k)(k + 1 \dots n)$ y has cycle shape (k, n - k)

Proof

 $\langle x, y \rangle$ is ...

transitive: x moves points between the orbits of y primitive: k and n - k are coprime [exercise] A_n : no other primitive subgroup has a k-cycle as $k < \frac{n}{2}$ [Marggraf | 1892]

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where

x = (12 n)

x is nontrivial, with $a \neq ax$

 $k \in \{\frac{n}{2} - 1, \frac{n}{2} - 2\}$ is odd $y = (1 \dots k)(k + 1 \dots n)$

y has cycle shape (k, n - k)& a and ax in different cycles

Proof

 $\langle x, y \rangle$ is ...

transitive: x moves points between the orbits of y primitive: k and n - k are coprime [exercise] A_n : no other primitive subgroup has a k-cycle as $k < \frac{n}{2}$ [Marggraf | 1892]

Every finite simple group can be generated by two elements.

Example

Fix even $n \ge 8$. Then $A_n = \langle x, y \rangle$ where

x = (12 n)

x is nontrivial, with $a \neq ax$

 $k \in \{\frac{n}{2} - 1, \frac{n}{2} - 2\}$ is odd $y = (1 \dots k)(k + 1 \dots n)$

y has cycle shape (k, n - k)& a and ax in different cycles

Proof

 $\langle x, y \rangle$ is ...

transitive: x moves points between the orbits of y primitive: k and n - k are coprime [exercise] A_n : no other primitive subgroup has a k-cycle as $k < \frac{n}{2}$ [Marggraf | 1892]

Consequence

For even $n \ge 8$, for all nontrivial $x \in A_n$, there exists $y \in A_n$ with $A_n = \langle x, y \rangle$.

Theorem (Guralnick & Kantor | 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Theorem (Guralnick & Kantor | 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Application

Let G be a finite simple group.

Theorem (Guralnick & Kantor | 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Application

Let G be a finite simple group.

Which subsets $S \subseteq G$ arise as the set of images of a word $w \in F_2$?

Theorem (Guralnick & Kantor | 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Application

Let G be a finite simple group.

Which subsets $S \subseteq G$ arise as the set of images of a word $w \in F_2$?

If $w = x^{-1}y^{-1}xy$, then w(G) = G [Liebeck, O'Brien, Shalev, Tiep | 2010].

Theorem (Guralnick & Kantor | 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Application

Let G be a finite simple group.

Which subsets $S \subseteq G$ arise as the set of images of a word $w \in F_2$?

If $w = x^{-1}y^{-1}xy$, then w(G) = G [Liebeck, O'Brien, Shalev, Tiep | 2010].

Theorem (Lubotzky | 2014)

There exists $w \in F_2$ such that S = w(G) iff $1 \in S$ and $S^a = S$ for all $a \in Aut(G)$.

Theorem (Guralnick & Kantor | 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Application

Let G be a finite simple group.

Which subsets $S \subseteq G$ arise as the set of images of a word $w \in F_2$?

If $w = x^{-1}y^{-1}xy$, then w(G) = G [Liebeck, O'Brien, Shalev, Tiep | 2010].

Theorem (Lubotzky | 2014)

There exists $w \in F_2$ such that S = w(G) iff $1 \in S$ and $S^a = S$ for all $a \in Aut(G)$.

The only CFSG-dependent ingredient of this is [Guralnick & Kantor | 2000].

Theorem (Guralnick & Kantor | 2000)

Every finite simple group is $\frac{3}{2}$ -generated.

Application

Let G be a finite simple group.

Which subsets $S \subseteq G$ arise as the set of images of a word $w \in F_2$?

If $w = x^{-1}y^{-1}xy$, then w(G) = G [Liebeck, O'Brien, Shalev, Tiep | 2010].

Theorem (Lubotzky | 2014)

There exists $w \in F_2$ such that S = w(G) iff $1 \in S$ and $S^a = S$ for all $a \in Aut(G)$.

The only CFSG-dependent ingredient of this is [Guralnick & Kantor | 2000].

Theorem (Ionescu | 1976)

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} . Then for every nonzero $x \in \mathfrak{g}$, there exists $y \in \mathfrak{g}$ such that x and y generate \mathfrak{g} as a Lie algebra.

The **spread** of a group *G*, written s(G), is the greatest *k* such that for all nontrivial $x_1, \ldots, x_k \in G$ there exists $y \in G$ such that $\langle x_i, y \rangle = G$.

Theorem (Breuer, Guralnick & Kantor | 2008)

For every finite simple group G we have $s(G) \ge 2$.

Theorem (Breuer, Guralnick & Kantor | 2008)

For every finite simple group G we have $s(G) \ge 2$.

Application

The product replacement graph, written $\Gamma_k(G)$,

Theorem (Breuer, Guralnick & Kantor | 2008)

For every finite simple group G we have $s(G) \ge 2$.

Application

The **product replacement graph**, written $\Gamma_k(G)$, has as vertices the generating *k*-tuples of *G*

Theorem (Breuer, Guralnick & Kantor | 2008)

For every finite simple group G we have $s(G) \ge 2$.

Application

The **product replacement graph**, written $\Gamma_k(\mathbf{G})$, has as vertices the generating *k*-tuples of *G* and the neighbours of $(x_1, \ldots, x_i, \ldots, x_k)$ are $(x_1, \ldots, x_i x_j^{\pm}, \ldots, x_k)$ and $(x_1, \ldots, x_j^{\pm} x_i, \ldots, x_k)$ for $1 \le i \ne j \le k$.

Theorem (Breuer, Guralnick & Kantor | 2008)

For every finite simple group G we have $s(G) \ge 2$.

Application

The **product replacement graph**, written $\Gamma_k(G)$, has as vertices the generating *k*-tuples of *G* and the neighbours of $(x_1, \ldots, x_i, \ldots, x_k)$ are $(x_1, \ldots, x_i x_j^{\pm}, \ldots, x_k)$ and $(x_1, \ldots, x_j^{\pm} x_i, \ldots, x_k)$ for $1 \le i \ne j \le k$.

Question (Pak | 2001) Is $\Gamma_k(G)$ connected for all k > d(G)?

Theorem (Breuer, Guralnick & Kantor | 2008)

For every finite simple group G we have $s(G) \ge 2$.

Application

The **product replacement graph**, written $\Gamma_k(G)$, has as vertices the generating *k*-tuples of *G* and the neighbours of $(x_1, \ldots, x_i, \ldots, x_k)$ are $(x_1, \ldots, x_i x_j^{\pm}, \ldots, x_k)$ and $(x_1, \ldots, x_j^{\pm} x_i, \ldots, x_k)$ for $1 \le i \ne j \le k$.

Question (Pak | 2001) Is $\Gamma_k(G)$ connected for all k > d(G)?

Lemma (Evans | 1993)

If $s(G) \ge 2$, then all redundant generating k-tuples are connected in $\Gamma_k(G)$.

A generating tuple is **redundant** if a proper subtuple also generates.

Theorem (Burness & H | 2020) Let $G = PSL_2(q)$ with $q \ge 11$. Then

Theorem (Burness & H | 2020)

Let $G = PSL_2(q)$ with $q \ge 11$. Then

> if q is even, then s(G) = q - 2

Theorem (Burness & H | 2020)

Let $G = PSL_2(q)$ with $q \ge 11$. Then

- > if q is even, then s(G) = q 2
- > if $q \equiv 1 \pmod{4}$, then s(G) = q 1

Theorem (Burness & H | 2020)

Let $G = PSL_2(q)$ with $q \ge 11$. Then

- > if q is even, then s(G) = q 2
- > if $q \equiv 1 \pmod{4}$, then s(G) = q 1

> if
$$q \equiv 3 \pmod{4}$$
, then $s(G) \ge q - 3$.

Theorem (Burness & H | 2020)

Let $G = PSL_2(q)$ with $q \ge 11$. Then

> if q is even, then s(G) = q - 2

> if
$$q \equiv 1 \pmod{4}$$
, then $s(G) = q - 1$

> if
$$q \equiv 3 \pmod{4}$$
, then $s(G) \ge q - 3$.

Question

What is the spread of $PSL_2(q)$ when $q \equiv 3 \pmod{4}$?

Determining the spread of a group exactly is not easy!

Theorem (Burness & H | 2020)

Let $G = PSL_2(q)$ with $q \ge 11$. Then

> if q is even, then s(G) = q - 2

> if
$$q \equiv 1 \pmod{4}$$
, then $s(G) = q - 1$

> if
$$q \equiv 3 \pmod{4}$$
, then $s(G) \ge q - 3$.

Question

What is the spread of $PSL_2(q)$ when $q \equiv 3 \pmod{4}$?

If $q \equiv 3 \pmod{4}$ is prime, then $s(G) \ge \frac{1}{2}(3q - 7)$ [Burness & H | 2020].

Are there any finite groups G with s(G) = 1?

Are there any finite groups G with s(G) = 1?

Theorem (Brenner & Wiegold | 1975)

Let G be a finite soluble group. Then

 $s(G) \geqslant 2 \iff s(G) \geqslant 1 \iff G/N \text{ is cyclic for all } 1 \neq N \leqslant G.$

Are there any finite groups G with s(G) = 1?

Theorem (Brenner & Wiegold | 1975)

Let G be a finite soluble group. Then

 $s(G) \geqslant 2 \iff s(G) \geqslant 1 \iff G/N \text{ is cyclic for all } 1 \neq N \leqslant G.$

Note For any group G, if $s(G) \ge 1$, then for all $1 \ne N \le G$ and $1 \ne n \in N$, there exists $g \in G$ such that $G = \langle n, g \rangle$, so $G/N = \langle Ng \rangle$, which is cyclic.

Are there any finite groups G with s(G) = 1?

Theorem (Brenner & Wiegold | 1975)

Let G be a finite soluble group. Then

 $s(G) \geqslant 2 \iff s(G) \geqslant 1 \iff G/N \text{ is cyclic for all } 1 \neq N \leqslant G.$

Note For any group G, if $s(G) \ge 1$, then for all $1 \ne N \le G$ and $1 \ne n \in N$, there exists $g \in G$ such that $G = \langle n, g \rangle$, so $G/N = \langle Ng \rangle$, which is cyclic.

Theorem (Burness, Guralnick & H | 2021)

Let G be a finite group. Then

 $s(G) \ge 2 \iff s(G) \ge 1 \iff G/N$ is cyclic for all $1 \ne N \leqslant G$.

the infinite

Some simple groups are not finitely generated.

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some finitely generated simple groups are not 2-generated.

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some finitely generated simple groups are not 2-generated.

Example The Guba group: a finitely generated simple group where every 2-generated subgroup is free [Guba, 1986].

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some finitely generated simple groups are not 2-generated.

Example The Guba group: a finitely generated simple group where every 2-generated subgroup is free [Guba, 1986].

Some 2-generated groups with only cyclic quotients are not $\frac{3}{2}$ -generated.

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some finitely generated simple groups are not 2-generated.

Example The Guba group: a finitely generated simple group where every 2-generated subgroup is free [Guba, 1986].

Some 2-generated groups with only cyclic quotients are not $\frac{3}{2}$ -generated. **Example** In $\langle Alt(\mathbb{Z}), x \mapsto x+3 \rangle$ no 3-cycle is in a generating pair [Cox, 2022].

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some finitely generated simple groups are not 2-generated.

Example The Guba group: a finitely generated simple group where every 2-generated subgroup is free [Guba, 1986].

Some 2-generated groups with only cyclic quotients are not $\frac{3}{2}$ -generated. **Example** In $\langle Alt(\mathbb{Z}), x \mapsto x+3 \rangle$ no 3-cycle is in a generating pair [Cox, 2022]. **Question** Is there a 2-generated simple group that is not $\frac{3}{2}$ -generated.

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some finitely generated simple groups are not 2-generated.

Example The Guba group: a finitely generated simple group where every 2-generated subgroup is free [Guba, 1986].

Some 2-generated groups with only cyclic quotients are not $\frac{3}{2}$ -generated. **Example** In $\langle Alt(\mathbb{Z}), x \mapsto x+3 \rangle$ no 3-cycle is in a generating pair [Cox, 2022]. **Question** Is there a 2-generated simple group that is not $\frac{3}{2}$ -generated.

Nevertheless ... can we find some infinite $\frac{3}{2}$ -generated groups?

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some finitely generated simple groups are not 2-generated.

Example The Guba group: a finitely generated simple group where every 2-generated subgroup is free [Guba, 1986].

Some 2-generated groups with only cyclic quotients are not $\frac{3}{2}$ -generated. **Example** In $\langle Alt(\mathbb{Z}), x \mapsto x+3 \rangle$ no 3-cycle is in a generating pair [Cox, 2022]. **Question** Is there a 2-generated simple group that is not $\frac{3}{2}$ -generated.

Nevertheless ... can we find some infinite $\frac{3}{2}$ -generated groups?

Observation (H | 2020)

Let G be a infinite soluble group such that every proper quotient is cyclic. Then G is $\frac{3}{2}$ -generated

Some simple groups are not finitely generated.

Example The alternating group $Alt(\mathbb{Z})$ is locally finite.

Some finitely generated simple groups are not 2-generated.

Example The Guba group: a finitely generated simple group where every 2-generated subgroup is free [Guba, 1986].

Some 2-generated groups with only cyclic quotients are not $\frac{3}{2}$ -generated. **Example** In $\langle Alt(\mathbb{Z}), x \mapsto x+3 \rangle$ no 3-cycle is in a generating pair [Cox, 2022]. **Question** Is there a 2-generated simple group that is not $\frac{3}{2}$ -generated.

Nevertheless ... can we find some infinite $\frac{3}{2}$ -generated groups?

Observation (H | 2020)

Let G be a infinite soluble group such that every proper quotient is cyclic. Then G is $\frac{3}{2}$ -generated ... since G is cyclic!

Let \mathfrak{C} be the Cantor space $\{0, 1\}^{\mathbb{N}}$.

Let \mathfrak{C} be the Cantor space $\{0, 1\}^{\mathbb{N}}$.

[0, 1] = ------

Let \mathfrak{C} be the Cantor space $\{0, 1\}^{\mathbb{N}}$.

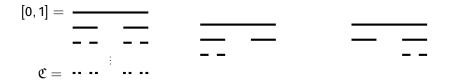
[0, 1] = _____

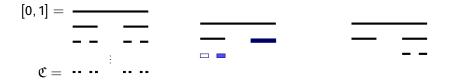
Let \mathfrak{C} be the Cantor space $\{0, 1\}^{\mathbb{N}}$.

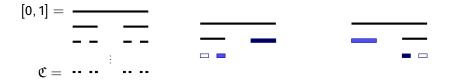
[0, 1] = _____

Let \mathfrak{C} be the Cantor space $\{0, 1\}^{\mathbb{N}}$.

Let \mathfrak{C} be the Cantor space $\{0, 1\}^{\mathbb{N}}$.



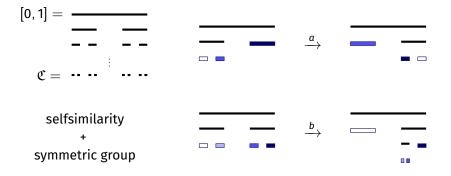


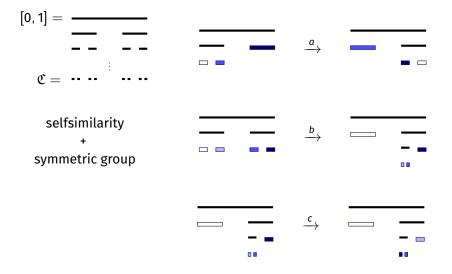


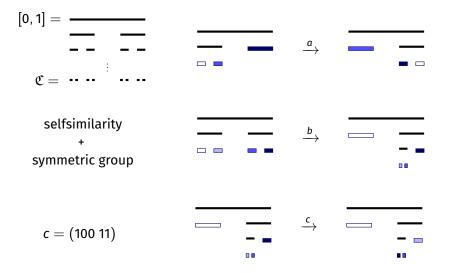


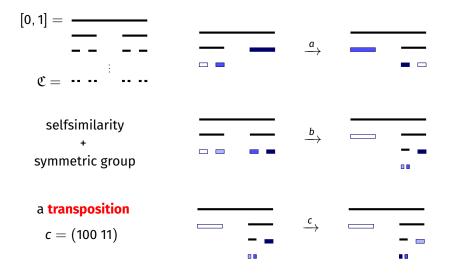


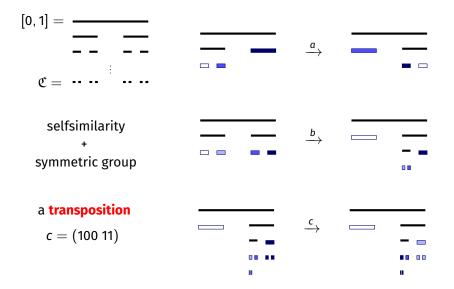
selfsimilarity + symmetric group



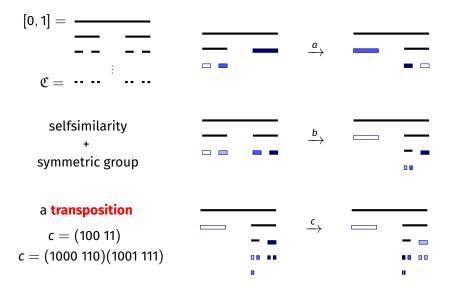








Thompson's group V: first known finitely presented infinite simple group. Let \mathfrak{C} be the Cantor space $\{0, 1\}^{\mathbb{N}}$. Then V acts on \mathfrak{C} by homeomorphisms.



Let $G = S_n$ and $\Omega = \{1, \ldots, n\}$.

Let $G = S_n$ and $\Omega = \{1, ..., n\}$. $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$

Let
$$G = S_n$$
 and $\Omega = \{1, ..., n\}$.
 $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$
 $G = \langle t_{i,j} | t_{i,j}^2, t_{i,j}^{t_{k,l}} = t_{i(kl),j(kl)} \rangle$

Let
$$G = S_n$$
 and $\Omega = \{1, ..., n\}$.
 $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$
 $G = \langle t_{i,j} | t_{i,j}^2, t_{i,j}^{t_{k,l}} = t_{i(kl),j(kl)} \rangle$

Let $(UW) \in V$ transpose the two disjoint basic open sets $U, W \subseteq \mathfrak{C}$.

Let
$$G = S_n$$
 and $\Omega = \{1, ..., n\}$.
 $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$
 $G = \langle t_{i,j} | t_{i,j}^2, t_{i,j}^{t_{k,l}} = t_{i(kl),j(kl)} \rangle$

Let $(UW) \in V$ transpose the two disjoint basic open sets $U, W \subseteq \mathfrak{C}$. $V = \langle (UW) : U, W$ disjoint basic open sets of $\mathfrak{C} \rangle$ [Brin '04]

Let
$$G = S_n$$
 and $\Omega = \{1, ..., n\}$.
 $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$
 $G = \langle t_{i,j} | t_{i,j}^2, t_{i,j}^{t_{k,l}} = t_{i(kl),j(kl)} \rangle$

Let $(UW) \in V$ transpose the two disjoint basic open sets $U, W \subseteq \mathfrak{C}$. $V = \langle (UW) : U, W$ disjoint basic open sets of $\mathfrak{C} \rangle$ [Brin '04] $V = \langle t_{U,W} | t_{U,W}^2, t_{U,W}^{t_{X,Y}} = t_{U(XY),W(XY)}, t_{U,W} = t_{U0,W0}t_{U1,W1} \rangle$ [Bleak & Quick '17]

Let
$$G = S_n$$
 and $\Omega = \{1, ..., n\}$.
 $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$
 $G = \langle t_{i,j} | t_{i,j}^2, t_{i,j}^{t_{k,l}} = t_{i(kl),j(kl)} \rangle$

Let $(UW) \in V$ transpose the two disjoint basic open sets $U, W \subseteq \mathfrak{C}$. $V = \langle (UW) : U, W$ disjoint basic open sets of $\mathfrak{C} \rangle$ [Brin '04] $V = \langle t_{U,W} | t_{U,W}^2, t_{U,W}^{t_{X,Y}} = t_{U(XY),W(XY)}, t_{U,W} = t_{U0,W0}t_{U1,W1} \rangle$ [Bleak & Quick '17]

Let
$$G = S_n$$
 and $\Omega = \{1, ..., n\}$.
 $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$
 $G = \langle t_{i,j} | t_{i,j}^2, t_{i,j}^{t_{k,l}} = t_{i(kl),j(kl)} \rangle$

Covering Lemma for S_n Let $A_1, \ldots, A_k \subseteq \Omega$ such that $A_i \cap A_{i+1} \neq \emptyset$. Then $G = \langle G_{[A_1]}, \ldots, G_{[A_k]} \rangle$.

Let $(UW) \in V$ transpose the two disjoint basic open sets $U, W \subseteq \mathfrak{C}$. $V = \langle (UW) : U, W$ disjoint basic open sets of $\mathfrak{C} \rangle$ [Brin '04] $V = \langle t_{U,W} | t_{U,W}^2, t_{U,W}^{t_{X,Y}} = t_{U(XY),W(XY)}, t_{U,W} = t_{U0,W0}t_{U1,W1} \rangle$ [Bleak & Quick '17]

Let
$$G = S_n$$
 and $\Omega = \{1, ..., n\}$.
 $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$
 $G = \langle t_{i,j} | t_{i,j}^2, t_{i,j}^{t_{k,l}} = t_{i(kl),j(kl)} \rangle$

Covering Lemma for S_n Let $A_1, \ldots, A_k \subseteq \Omega$ such that $A_i \cap A_{i+1} \neq \emptyset$. Then $G = \langle G_{[A_1]}, \ldots, G_{[A_k]} \rangle$.

Let $(UW) \in V$ transpose the two disjoint basic open sets $U, W \subseteq \mathfrak{C}$. $V = \langle (UW) : U, W$ disjoint basic open sets of $\mathfrak{C} \rangle$ [Brin '04] $V = \langle t_{U,W} | t_{U,W}^2, t_{U,W}^{t_{X,Y}} = t_{U(XY),W(XY)}, t_{U,W} = t_{U0,W0}t_{U1,W1} \rangle$ [Bleak & Quick '17]

For clopen $U \subseteq \mathfrak{C}$, write $V_{[U]}$ for the p/wise stabiliser of $\mathfrak{C} \setminus U$. Then $V_{[U]} \cong V$.

Let
$$G = S_n$$
 and $\Omega = \{1, ..., n\}$.
 $G = \langle (ij) : i, j \text{ distinct elements of } \Omega \rangle$
 $G = \langle t_{i,j} | t_{i,j}^2, t_{i,j}^{t_{k,l}} = t_{i(kl),j(kl)} \rangle$

Covering Lemma for S_n Let $A_1, \ldots, A_k \subseteq \Omega$ such that $A_i \cap A_{i+1} \neq \emptyset$. Then $G = \langle G_{[A_1]}, \ldots, G_{[A_k]} \rangle$.

Let $(UW) \in V$ transpose the two disjoint basic open sets $U, W \subseteq \mathfrak{C}$. $V = \langle (UW) : U, W$ disjoint basic open sets of $\mathfrak{C} \rangle$ [Brin '04] $V = \langle t_{U,W} | t_{U,W}^2, t_{U,W}^{t_{X,Y}} = t_{U(XY),W(XY)}, t_{U,W} = t_{U0,W0}t_{U1,W1} \rangle$ [Bleak & Quick '17]

For clopen $U \subseteq \mathfrak{C}$, write $V_{[U]}$ for the p/wise stabiliser of $\mathfrak{C} \setminus U$. Then $V_{[U]} \cong V$.

Covering Lemma for V

Let $U_1, \ldots, U_k \subseteq \mathfrak{C}$ be clopen s.t. $U_i \cap U_{i+1} \neq \emptyset$. Then $V = \langle V_{[U_1]}, \ldots, V_{[U_k]} \rangle$.

Thompson's group V is $\frac{3}{2}$ -generated.

Thompson's group V is $\frac{3}{2}$ -generated.

Our methods apply to various generalisations of V:

Thompson's group V is $\frac{3}{2}$ -generated.

Our methods apply to various generalisations of V:

Brin-Thompson groups nV which act on the product space \mathbb{C}^n

Thompson's group V is $\frac{3}{2}$ -generated.

Our methods apply to various generalisations of V:

Brin-Thompson groups nV which act on the product space \mathfrak{C}^n **Higman-Thompson groups** V_n and V'_n which act on $\mathfrak{C}_n = \{1, \ldots, n\}^{\mathbb{N}}$

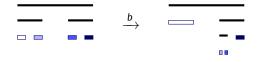
Thompson's group V is $\frac{3}{2}$ -generated.

Our methods apply to various generalisations of V:

Brin-Thompson groups nV which act on the product space \mathfrak{C}^n **Higman-Thompson groups** V_n and V'_n which act on $\mathfrak{C}_n = \{1, \ldots, n\}^{\mathbb{N}}$

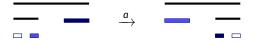
Theorem (Donoven & H | 2020)

For all $n \ge 2$, the groups V_n , V'_n and nV are $\frac{3}{2}$ -generated.

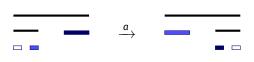


 $\mathbf{T} = \{ g \in V \mid \text{permutation associated to } g \text{ is cyclic} \}$

 $\mathbf{T} = \{g \in V \mid \text{permutation associated to } g \text{ is cyclic}\}$



 $\mathbf{T} = \{g \in V \mid \text{permutation associated to } g \text{ is cyclic}\}$



as a homeomorphism of \mathbb{S}^1

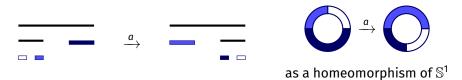
 $\mathbf{T} = \{ g \in V \mid \text{permutation associated to } g \text{ is cyclic} \}$



Theorem (Thompson | 1965 // Mason | 1977)

Thompson's groups V and T are simple, 2-generated and finitely presented.

 $\mathbf{T} = \{g \in V \mid \text{permutation associated to } g \text{ is cyclic}\}$



Theorem (Thompson | 1965 // Mason | 1977)

Thompson's groups V and T are simple, 2-generated and finitely presented. While F' is simple, $F/F' \cong \mathbb{Z}^2$; F is 2-generated but F' is not finitely generated.

Covering Lemma for F

Let $[a_1, b_1], \ldots, [a_k, b_k] \subseteq [0, 1]$ be dyadic intervals with $\bigcup_{i=1}^k (a_i, b_i) = (0, 1)$. Then $F = \langle F_{[a_1, b_1]}, \ldots, F_{[a_k, b_k]} \rangle$.

Covering Lemma for F

Let $[a_1, b_1], \ldots, [a_k, b_k] \subseteq [0, 1]$ be dyadic intervals with $\bigcup_{i=1}^k (a_i, b_i) = (0, 1)$. Then $F = \langle F_{[a_1, b_1]}, \ldots, F_{[a_k, b_k]} \rangle$.

Let $[a, b] \subseteq \mathbb{S}$ be a dyadic interval (by making the identification $\mathbb{S} = \mathbb{R}/\mathbb{Z}$). Write $T_{[a,b]}$ for the pointwise stabiliser of $[0, 1] \setminus (a, b)$. Then $T_{[a,b]} \cong F$.

Covering Lemma for F

Let $[a_1, b_1], \ldots, [a_k, b_k] \subseteq [0, 1]$ be dyadic intervals with $\bigcup_{i=1}^k (a_i, b_i) = (0, 1)$. Then $F = \langle F_{[a_1, b_1]}, \ldots, F_{[a_k, b_k]} \rangle$.

Let $[a, b] \subseteq \mathbb{S}$ be a dyadic interval (by making the identification $\mathbb{S} = \mathbb{R}/\mathbb{Z}$). Write $T_{[a,b]}$ for the pointwise stabiliser of $[0, 1] \setminus (a, b)$. Then $T_{[a,b]} \cong F$.

Covering Lemma for T

Let $[a_1, b_1], \ldots, [a_k, b_k] \subseteq \mathbb{S}^1$ be dyadic intervals with $\bigcup_{i=1}^k (a_i, b_i) = \mathbb{S}^1$. Then $T = \langle T_{[a_1, b_1]}, \ldots, T_{[a_k, b_k]} \rangle$.

Thompson's group V is $\frac{3}{2}$ -generated.

Our methods apply to various generalisations of V:

Brin-Thompson groups nV which act on the product space \mathfrak{C}^n **Higman-Thompson groups** V_n and V'_n which act on $\mathfrak{C}_n = \{1, \ldots, n\}^{\mathbb{N}}$

Theorem (Donoven & H | 2020)

For all $n \ge 2$, the groups V_n , V'_n and nV are $\frac{3}{2}$ -generated.

Thompson's group V is $\frac{3}{2}$ -generated.

Our methods apply to various generalisations of V:

Brin-Thompson groups nV which act on the product space \mathfrak{C}^n **Higman-Thompson groups** V_n and V'_n which act on $\mathfrak{C}_n = \{1, \ldots, n\}^{\mathbb{N}}$

Theorem (Donoven & H | 2020)

For all $n \ge 2$, the groups V_n , V'_n and nV are $\frac{3}{2}$ -generated.

Theorem (Bleak, H & Skipper | 2022)

Thompson's group T is $\frac{3}{2}$ -generated.

Thompson's group V is $\frac{3}{2}$ -generated.

Our methods apply to various generalisations of V:

Brin-Thompson groups nV which act on the product space \mathfrak{C}^n **Higman-Thompson groups** V_n and V'_n which act on $\mathfrak{C}_n = \{1, \ldots, n\}^{\mathbb{N}}$

Theorem (Donoven & H | 2020)

For all $n \ge 2$, the groups V_n , V'_n and nV are $\frac{3}{2}$ -generated.

Theorem (Bleak, H & Skipper | 2022)

Thompson's group T is $\frac{3}{2}$ -generated.

Lots more work in progress with Bleak, Donoven, Hyde & Skipper.

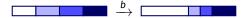
Thompson's group T is $\frac{3}{2}$ -generated.

Thompson's group T is $\frac{3}{2}$ -generated.

We show that for all nontrivial $x \in T$ there exists $y \in b^T$ such that $\langle x, y \rangle$. (Recall the A_n example 45 mins ago.)

Thompson's group T is $\frac{3}{2}$ -generated.

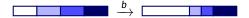
We show that for all nontrivial $x \in T$ there exists $y \in b^T$ such that $\langle x, y \rangle$. (Recall the A_n example 45 mins ago.)



Proof idea

Thompson's group T is $\frac{3}{2}$ -generated.

We show that for all nontrivial $x \in T$ there exists $y \in b^T$ such that $\langle x, y \rangle$. (Recall the A_n example 45 mins ago.)

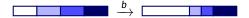


Proof idea

Let $x \in T$ be nontrivial.

Thompson's group T is $\frac{3}{2}$ -generated.

We show that for all nontrivial $x \in T$ there exists $y \in b^T$ such that $\langle x, y \rangle$. (Recall the A_n example 45 mins ago.)



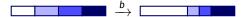
Proof idea

- Let $x \in T$ be nontrivial.
 - |x| finite:

|x| infinite:

Thompson's group T is $\frac{3}{2}$ -generated.

We show that for all nontrivial $x \in T$ there exists $y \in b^T$ such that $\langle x, y \rangle$. (Recall the A_n example 45 mins ago.)

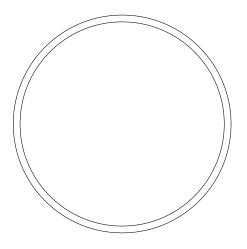


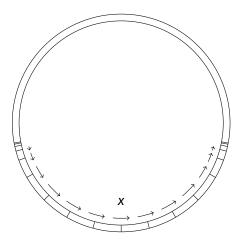
Proof idea

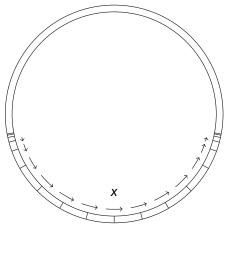
Let $x \in T$ be nontrivial.

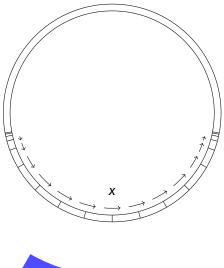
|x| finite: we can give x explicitly and use a combinatorial generation criterion from [Golan | 2021] based on the Stallings 2-core

|x| infinite:

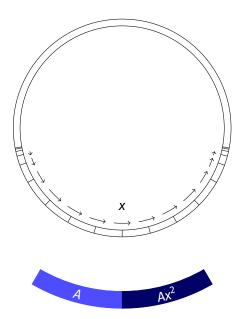




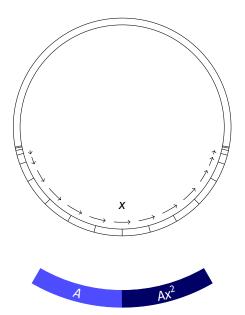




Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.

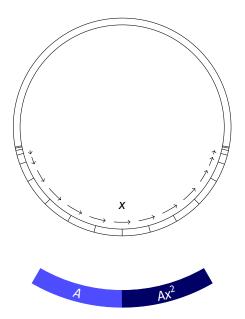


Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.

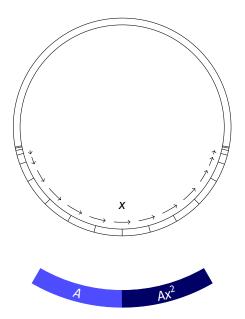


Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.

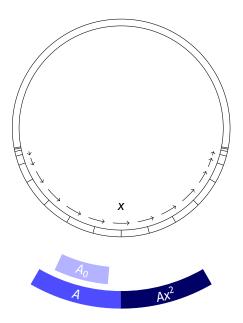
Let
$$y = xa_0a_1^{x^2}$$
.



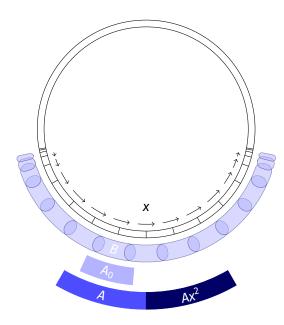
Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.
Let $y = xa_0a_1^{x^2}$.
So $\langle x, y \rangle \ge \langle a_0a_1^{x^2}, a_0^{x^{-2}}a_1 \rangle'$



Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.
Let $y = xa_0a_1^{x^2}$.
So $\langle x, y \rangle \ge \langle a_0a_1^{x^2}, a_0^{x^{-2}}a_1 \rangle'$
 $\ge (T_{[A]})'$

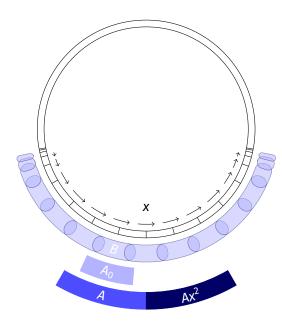


Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.
Let $y = xa_0 a_1^{x^2}$.
So $\langle x, y \rangle \ge \langle a_0 a_1^{x^2}, a_0^{x^{-2}} a_1 \rangle'$
 $\ge (T_{[A]})'$
 $\ge T_{[A_0]}$.



Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.
Let $y = xa_0 a_1^{x^2}$.
So $\langle x, y \rangle \ge \langle a_0 a_1^{x^2}, a_0^{x^{-2}} a_1 \rangle'$
 $\ge (T_{[A]})'$
 $\ge T_{[A_0]}$.
So $\langle x, y \rangle \ge \langle T_{Y_1, Y_1}, x \rangle \ge T_{Y_2}$.

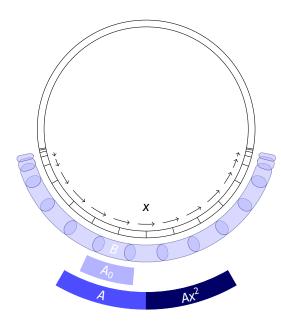
So $\langle x, y \rangle \ge \langle T_{[A_0]}, x \rangle \ge T_{[B]}$ where $B = \bigcup_{i \in \mathbb{Z}} A_0 x^i$.



Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.
Let $y = xa_0 a_1^{x^2}$.
So $\langle x, y \rangle \ge \langle a_0 a_1^{x^2}, a_0^{x^{-2}} a_1 \rangle'$
 $\ge (T_{[A]})'$
 $\ge T_{[A_0]}$.
So $\langle x, y \rangle \ge \langle T_{[A_0]}, x \rangle \ge T_{[B]}$

So $\langle x, y \rangle \ge \langle T_{[A_0]}, x \rangle \ge T_{[B]}$ where $B = \bigcup_{i \in \mathbb{Z}} A_0 x^i$.

Tweak y to handle $\mathbb{S}^1 \setminus B$.



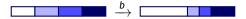
Fix
$$T_{[A]} = \langle a_0, a_1 \rangle$$
.
Let $y = xa_0 a_1^{x^2}$.
So $\langle x, y \rangle \ge \langle a_0 a_1^{x^2}, a_0^{x^{-2}} a_1 \rangle'$
 $\ge (T_{[A]})'$
 $\ge T_{[A_0]}$.
So $\langle x, y \rangle \ge \langle T_{[A_0]}, x \rangle \ge T_{[B]}$
where $B = \bigcup_{i \in \mathbb{Z}} A_0 x^i$.

Tweak y to handle $\mathbb{S}^1 \setminus B$.

Show that every infinite order elt (including *b*) is conjugate to an elt like *y*.

Thompson's group T is $\frac{3}{2}$ -generated.

We show that for all nontrivial $x \in T$ there exists $y \in b^T$ such that $\langle x, y \rangle$. (Recall the A_n example 45 mins ago.)

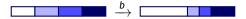


Let $x \in T$ be nontrivial.

|x| finite: we can give x explicitly and use a combinatorial generation criterion from [Golan | 2021] based on the Stallings 2-core |x| infinite:

Thompson's group T is $\frac{3}{2}$ -generated.

We show that for all nontrivial $x \in T$ there exists $y \in b^T$ such that $\langle x, y \rangle$. (Recall the A_n example 45 mins ago.)



Let $x \in T$ be nontrivial.

|x| finite: we can give x explicitly and use a combinatorial generation criterion from [Golan | 2021] based on the Stallings 2-core |x| infinite: we build y based on standard generators of F and orbits of x and use a dynamical argument to make this a conjugate of b

Thompson's group T is $\frac{3}{2}$ -generated.

We show that for all nontrivial $x \in T$ there exists $y \in b^T$ such that $\langle x, y \rangle$. (Recall the A_n example 45 mins ago.)

Let $x \in T$ be nontrivial.

|x| finite: we can give x explicitly and use a combinatorial generation criterion from [Golan | 2021] based on the Stallings 2-core

|x| infinite: we build y based on standard generators of F and orbits of x and use a dynamical argument to make this a conjugate of b

Theorem (Bleak, H & Skipper | 2022)

For any s, $t \in T$ of infinite order, there exists $g \in T$ such that $\langle s, t^g \rangle = T$.