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the finite



Theorem (Steinberg | 1962)
Every finite simple group can be generated by two elements.

Example
Fix even n > 8. Then An = 〈x, y〉 where

� k ∈ {n2 − 1, n2 − 2} is odd

x = (1 2 n)

x is nontrivial, with a 6= ax

y = (1 . . . k)(k + 1 . . . n)

y has cycle shape (k, n− k)
& a and ax in di�erent cycles

Proof
〈x, y〉 is . . .

transitive: x moves points between the orbits of y
primitive: k and n− k are coprime [exercise]
An: no other primitive subgroup has a k-cycle as k < n

2 [Marggraf | 1892]

Consequence
For even n > 8, for all nontrivial x ∈ An, there exists y ∈ An with An = 〈x, y〉.
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A group is 3
2 -generated if every nontrivial element is in a generating pair.

Theorem (Guralnick & Kantor | 2000)

Every finite simple group is 3
2 -generated.

Application
Let G be a finite simple group.
Which subsets S ⊆ G arise as the set of images of a word w ∈ F2?
If w = x−1y−1xy, then w(G) = G [Liebeck, O’Brien, Shalev, Tiep | 2010].

Theorem (Lubotzky | 2014)

There existsw ∈ F2 such that S = w(G) i� 1 ∈ S and Sa = S for all a ∈ Aut(G).

The only CFSG-dependent ingredient of this is [Guralnick & Kantor | 2000].

Theorem (Ionescu | 1976)
Let g be a simple Lie algebra over C. Then for every nonzero x ∈ g, there
exists y ∈ g such that x and y generate g as a Lie algebra.
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The spread of a group G, written s(G), is the greatest k such that for all
nontrivial x1, . . . , xk ∈ G there exists y ∈ G such that 〈xi, y〉 = G.

Note that s(G) > 1 i� G is 3
2 -generated.

Theorem (Breuer, Guralnick & Kantor | 2008)
For every finite simple group G we have s(G) > 2.

Application
The product replacement graph, written Γk(G),

has as vertices the
generating k-tuples of G and the neighbours of (x1, . . . , xi, . . . , xk) are
(x1, . . . , xix±j , . . . , xk) and (x1, . . . , x±j xi, . . . , xk) for 1 6 i 6= j 6 k.

Question (Pak | 2001) Is Γk(G) connected for all k > d(G)?

Lemma (Evans | 1993)
If s(G) > 2, then all redundant generating k-tuples are connected in Γk(G).

A generating tuple is redundant if a proper subtuple also generates.
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Determining the spread of a group exactly is not easy!

Theorem (Burness & H | 2020)
Let G = PSL2(q) with q > 11. Then

> if q is even, then s(G) = q− 2
> if q ≡ 1 (mod 4), then s(G) = q− 1
> if q ≡ 3 (mod 4), then s(G) > q− 3.

Question
What is the spread of PSL2(q) when q ≡ 3 (mod 4)?

If q ≡ 3 (mod 4) is prime, then s(G) > 1
2 (3q− 7) [Burness & H | 2020].
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the infinite



What can we say about 3
2 -generation of infinite simple groups?

Some simple groups are not finitely generated.
Example The alternating group Alt(Z) is locally finite.

Some finitely generated simple groups are not 2-generated.
Example The Guba group: a finitely generated simple group where every
2-generated subgroup is free [Guba, 1986].

Some 2-generated groups with only cyclic quotients are not 3
2 -generated.

Example In 〈Alt(Z), x 7→ x+ 3〉 no 3-cycle is in a generating pair [Cox, 2022].
Question Is there a 2-generated simple group that is not 3

2 -generated.

Nevertheless . . . can we find some infinite 3
2 -generated groups?

Observation (H | 2020)
Let G be a infinite soluble group such that every proper quotient is cyclic.
Then G is 3

2 -generated

. . . since G is cyclic!
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Thompson’s group V : first known finitely presented infinite simple group.

Let C be the Cantor space {0, 1}N. Then V acts on C by homeomorphisms.

...

[0, 1] =

C =

a−→

selfsimilarity
+

symmetric group

b−→

a transposition

c = (100 11)

c = (1000 110)(1001 111)

c−→
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Let G = Sn and Ω = {1, . . . , n}.

G = 〈(i j) : i, j distinct elements of Ω〉
G = 〈ti,j | t2i,j, t

tk,l
i,j = ti(k l),j(k l)〉

For A ⊆ Ω, write G[A] for the pointwise stabiliser of Ω \ A. Then G[A] ∼= S|A|.

Covering Lemma for Sn
Let A1, . . . , Ak ⊆ Ω such that Ai ∩ Ai+1 6= ∅. Then G = 〈G[A1], . . . ,G[Ak]〉.

Let (UW) ∈ V transpose the two disjoint basic open sets U,W ⊆ C.
V = 〈(UW) : U,W disjoint basic open sets of C〉 [Brin ’04]
V = 〈tU,W | t2U,W, ttX,YU,W = tU(X Y),W(X Y), tU,W = tU0,W0tU1,W1〉 [Bleak & Quick ’17]

For clopenU ⊆ C, write V[U] for the p/wise stabiliser ofC \ U. Then V[U] ∼= V.

Covering Lemma for V

Let U1, . . . ,Uk ⊆ C be clopen s.t. Ui ∩ Ui+1 6= ∅. Then V = 〈V[U1], . . . , V[Uk]〉.
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Theorem (Donoven & H | 2020)

Thompson’s group V is 3
2 -generated.

Our methods apply to various generalisations of V:
Brin–Thompson groups nV which act on the product space Cn

Higman–Thompson groups Vn and V′n which act on Cn = {1, . . . , n}N

Theorem (Donoven & H | 2020)

For all n > 2, the groups Vn, V′n and nV are 3
2 -generated.

Theorem (Bleak, H & Skipper | 2022)

Thompson’s group T is 3
2 -generated.

Lots more work in progress with Bleak, Donoven, Hyde & Skipper.
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F = {g ∈ V | permutation associated to g is trivial}

b−→
b−→

as a homeomorphism of [0, 1]

T = {g ∈ V | permutation associated to g is cyclic}

a−→
a−→

as a homeomorphism of S1

Theorem (Thompson | 1965 // Mason | 1977)

Thompson’s groups V and T are simple, 2-generated and finitely presented.
While F′ is simple, F/F′ ∼= Z2; F is 2-generated but F′ is not finitely generated.
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Let [a, b] ⊆ [0, 1] be a dyadic interval (i.e. the endpoints a, b are in Z[ 1
2 ]).

Write F[a,b] for the pointwise stabiliser of [0, 1] \ (a, b). Then F[a,b] ∼= F.

Covering Lemma for F

Let [a1, b1], . . . , [ak, bk] ⊆ [0, 1] be dyadic intervals with
⋃k
i=1(ai, bi) = (0, 1).

Then F = 〈F[a1,b1], . . . , F[ak,bk]〉.

Let [a, b] ⊆ S be a dyadic interval (by making the identification S = R/Z).
Write T[a,b] for the pointwise stabiliser of [0, 1] \ (a, b). Then T[a,b] ∼= F.

Covering Lemma for T

Let [a1, b1], . . . , [ak, bk] ⊆ S1 be dyadic intervals with
⋃k
i=1(ai, bi) = S1.

Then T = 〈T[a1,b1], . . . , T[ak,bk]〉.
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Theorem (Bleak, H & Skipper | 2022)

Thompson’s group T is 3
2 -generated.

We show that for all nontrivial x ∈ T there exists y ∈ bT such that 〈x, y〉.
(Recall the An example 45 mins ago.)

b−→

Proof idea
Let x ∈ T be nontrivial.
|x| finite:

we can give x explicitly and use a combinatorial generation
criterion from [Golan | 2021] based on the Stallings 2-core

|x| infinite:

we build y based on standard generators of F and orbits of x
and use a dynamical argument to make this a conjugate of b

Theorem (Bleak, H & Skipper | 2022)

For any s, t ∈ T of infinite order, there exists g ∈ T such that 〈s, tg〉 = T.
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x

A Ax2
A0

B

Fix T[A] = 〈a0, a1〉.

Let y = xa0ax
2

1 .

So 〈x, y〉 > 〈a0ax
2

1 , ax−2
0 a1〉′

> (T[A])′
> T[A0].

So 〈x, y〉 > 〈T[A0], x〉 > T[B]
where B = ∪i∈ZA0xi.

Tweak y to handle S1 \ B.

Show that every infinite
order elt (including b) is
conjugate to an elt like y.
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conjugate to an elt like y.
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Theorem (Bleak, H & Skipper | 2022)

Thompson’s group T is 3
2 -generated.

We show that for all nontrivial x ∈ T there exists y ∈ bT such that 〈x, y〉.
(Recall the An example 45 mins ago.)

b−→

Let x ∈ T be nontrivial.
|x| finite: we can give x explicitly and use a combinatorial generation
criterion from [Golan | 2021] based on the Stallings 2-core
|x| infinite:

we build y based on standard generators of F and orbits of x
and use a dynamical argument to make this a conjugate of b

Theorem (Bleak, H & Skipper | 2022)

For any s, t ∈ T of infinite order, there exists g ∈ T such that 〈s, tg〉 = T.
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