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Theorem (Steinberg | 1962 + CFSG)

Every finite simple group can be generated by two elements.

Example
Fix even n > 8. Then A, = (x,y) where — ke {8 —-139—-2}isodd
X is nontrivial, with a # ax y has cycle shape (k, n — k)
& a and ax in different cycles
Proof
(x,y)is ...

transitive: x moves points between the orbits of y
primitive: R and n — k are coprime [exercise]
An: no other primitive subgroup has a k-cycle as k < 5 [Marggraf | 1892]

Consequence
For even n > 8, for all nontrivial x € Ay, there exists y € A, with A, = (x,y).
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Theorem (Guralnick & Kantor | 2000)

Every finite simple group is %-generated.

Application

Let G be a finite simple group.

Which subsets S C G arise as the set of images of a word w € F,?

If w = x""y~"xy, then w(G) = G [Liebeck, O’Brien, Shalev, Tiep | 2010].

Theorem (Lubotzky | 2014)
There existsw € F, suchthatS = w(G) iff1 € Sand S* = Sforalla € Aut(G).

The only CFSG-dependent ingredient of this is [Guralnick & Kantor | 2000].

Theorem (lonescu | 1976)

Let g be a simple Lie algebra over C. Then for every nonzero x € g, there
exists y € g such that x and y generate g as a Lie algebra.
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nontrivial x4, . . ., Xr € G there exists y € G such that (x;,y) = G.

Note that s(G) > 1iff G is 3-generated.

Theorem (Breuer, Guralnick & Kantor | 2008)

For every finite simple group G we have s(G) > 2.

Application
The product replacement graph, written ',(G), has as vertices the
generating k-tuples of G and the neighbours of (xy, .. ., Xiy oo, X) are

(x1,...,x,~xji,...,xk) and (x1,...,xjix,~,...,xk) forr<i#j<k

Question (Pak | 2001) Is ['k(G) connected for all k > d(G)?

Lemma (Evans | 1993)

If s(G) > 2, then all redundant generating k-tuples are connected in ',(G).

A generating tuple is redundant if a proper subtuple also generates.



Determining the spread of a group exactly is not easy!



Determining the spread of a group exactly is not easy!

Theorem (Burness & H | 2020)
Let G = PSL,(q) with g > 11. Then




Determining the spread of a group exactly is not easy!

Theorem (Burness & H | 2020)
Let G = PSL,(q) with g > 11. Then
> if q is even, then s(G) = q — 2




Determining the spread of a group exactly is not easy!

Theorem (Burness & H | 2020)
Let G = PSL,(q) with g > 11. Then
> if q is even, then s(G) = q — 2
> if g = 1(mod &), then s(G) = q — 1




Determining the spread of a group exactly is not easy!

Theorem (Burness & H | 2020)

Let G = PSL,(q) with g > 11. Then
> if q is even, then s(G) = q — 2
> if g = 1(mod &), then s(G) = q — 1
> if g = 3(mod 4), then s(G) > q — 3.




Determining the spread of a group exactly is not easy!

Theorem (Burness & H | 2020)

Let G = PSL,(q) with g > 11. Then
> if q is even, then s(G) = q — 2
> if g = 1(mod &), then s(G) = q — 1
> if g = 3(mod 4), then s(G) > q — 3.

What is the spread of PSL,(q) when g = 3 (mod 4)?




Determining the spread of a group exactly is not easy!

Theorem (Burness & H | 2020)

Let G = PSL,(q) with g > 11. Then
> if q is even, then s(G) = q — 2
> if g = 1(mod &), then s(G) = q — 1
> if g = 3(mod 4), then s(G) > q — 3.

What is the spread of PSL,(q) when g = 3 (mod 4)?

If g = 3 (mod &) is prime, then s(G) > 1(3q — 7) [Burness & H | 2020].
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Are there any finite groups G with s(G) = 1?

Theorem (Brenner & Wiegold | 1975)

Let G be a finite soluble group. Then
s(G) >2 < s(G)>1 <= G/Niscyclicforall1#N <G

Note For any group G, if s(G) > 1,thenforall1 # N < Gand1# n € N,
there exists g € G such that G = (n, g), so G/N = (Ng), which is cyclic.

Theorem (Burness, Guralnick & H | 2021)

Let G be a finite group. Then
s(G) 22 < s(G)>1 <= G/Niscyclicforall1#N <G
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What can we say about %-generation of infinite simple groups?

Some simple groups are not finitely generated.
Example The alternating group Alt(Z) is locally finite.

Some finitely generated simple groups are not 2-generated.

Example The Guba group: a finitely generated simple group where every
2-generated subgroup is free [Guba, 1986].

Some 2-generated groups with only cyclic quotients are not %-generated.
Example In (Alt(Z), x — x+3) no 3-cycle is in a generating pair [Cox, 2022].
Question Is there a 2-generated simple group that is not %-generated.

Nevertheless ... can we find some infinite %-generated groups?

Observation (H | 2020)
Let G be a infinite soluble group such that every proper quotient is cyclic.
Then G is %-generated ... since G is cyclic!
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Thompson’s group V: first known finitely presented infinite simple group.

Let ¢ be the Cantor space {0, 1}N. Then V acts on € by homeomorphisms.

[0,1] =
I a —
—_ -— - — —— H I
selfsimilarity b —_—
. -_— — —
symmetric group om
a transposition
— ¢ — —
¢ = (100 11) - - =

¢ = (1000 110)(1001 111) . .
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F = {g € V | permutation associated to g is trivial}

b
M — T

o as a homeomorphism of [0, 1]

T = {g € V | permutation associated to g is cyclic}
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as a homeomorphism of S'

Theorem (Thompson | 1965 /| Mason | 1977)

Thompson’s groups V and T are simple, 2-generated and finitely presented.
While F’is simple, F/F' = 7?; F is 2-generated but F’ is not finitely generated.
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Let[ay, b, ... ax. be] < [0, 1] be dyadic intervals with UL (a; i) = (0,1)
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Let [a, b] C S be a dyadic interval (by making the identification S = R/Z).
Write Tiq p) for the pointwise stabiliser of [0,1] \ (a, b). Then Tjq 5} = F.

Covering Lemma for T

Let [ar, bi], ..., [ar, by] € S' be dyadic intervals with (J{_,(a;, by) = S™.
Then T = <T[a1'b1]v ooy T[ak,bk]>'
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Thompson’s group V is 2-generated.

Our methods apply to various generalisations of V:
Brin-Thompson groups nV which act on the product space ¢"
Higman-Thompson groups V, and V, which acton €, = {1,...,n}
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Theorem (Donoven & H | 2020)
For all n > 2, the groups V,, V}, and nV are %-generated.

Theorem (Bleak, H & Skipper | 2022)

Thompson’s group T is %—generated.

Lots more work in progress with Bleak, Donoven, Hyde & Skipper.
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Theorem (Bleak, H & Skipper | 2022)

Thompson’s group T is %-generated.

We show that for all nontrivial x € T there exists y € b such that (x, y).
(Recall the A, example 45 mins ago.)

b

CIe — C [T
Proof idea
Let x € T be nontrivial.

|x| finite: we can give x explicitly and use a combinatorial generation
criterion from [Golan | 2021] based on the Stallings 2-core
x| infinite:
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Fix T[A] = <Go, G1>.
Lety = xaoaX.

So (x,y) > (apat’, a "a;)
> (Ty)'
Z Tipg)-

So (%, y) = (Tiag), X) = Tig)
where B = UjczA0X'.

Tweak y to handle S'\ B.

Show that every infinite
order elt (including b) is
conjugate to an elt like y.
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Thompson’s group T is %—generated.

We show that for all nontrivial x € T there exists y € b such that (x, y).
(Recall the A, example 45 mins ago.)

b
LT — [ .

Let x € T be nontrivial.

x| finite: we can give x explicitly and use a combinatorial generation
criterion from [Golan | 2021] based on the Stallings 2-core

|x| infinite: we build y based on standard generators of F and orbits of x
and use a dynamical argument to make this a conjugate of b

Theorem (Bleak, H & Skipper | 2022)

For any s, t € T of infinite order, there exists g € T such that (s, t9) =T.




