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the symmetries of a square

The group of symmeries of a square has a generating pair: two elements
such that any other can be obtained by repeatedly combining them.

For example, take a rotation by 90◦ and any reflection.

Group of symmetries of a square

The rotation by 180◦ is not
contained in a generating pair.

Group of symmetries of a triangle

Every nontrivial element is
contained in a generating pair.
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Let G be the group of symmetries of a regular n-gon (with n > 3).

> G has a generating pair (e.g. rotation by 360◦/n and a reflection).
> Every nontrivial element is contained in a generating pair i� n is prime.

Question When is every nontrivial element contained in a generating pair?

Theorem
Let G be a finite simple group.
> G has a generating pair (e.g. (1 2 3) & (1 . . . n) if G = An for odd n).
[Steinberg | 1962 + CFSG]

> Every nontrivial element of G is contained in a generating pair.
[Guralnick & Kantor | 2000]

Theorem [Burness, Guralnick & H | 2021]

Let G be a finite group. Then every nontrivial element of G is contained in a
generating pair i� every quotient of G other than G itself is cyclic.
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A number p is prime if it has exactly two quotients: 1 and p.

A group G is simple if it has exactly two quotients: 1 and G.
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Let G = Alt(Z), i.e. the even permutations ofZmoving finitely many points.

> G is an infinite simple group but it has no finite generating set.

We will need to assume that G has a finite generating set.

Thompson’s group V is the group of prefix substitutions of Cantor space, e.g.

→

→

→

> V is an infinite simple group and it has a generating pair.

Theorem [Donoven & H | 2020]
Every nontrivial element of V is contained in a generating pair.

This gave the first nontrivial example of an infinite group with this property.
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Theorem
Let G be a finite simple group.
> The group G has generating pair.
[Steinberg | 1962 + CFSG]

> Every nontrivial element of G is contained in a generating pair.
[Guralnick & Kantor | 2000]

Theorem
Let G be a simple group with a finite generating set.

Assume that G acts vigorously by homeomorphisms on Cantor space.
> The group G has a generating pair.
[Bleak, Elliott & Hyde | 2020]

> Every nontrivial element of G is contained in a generating pair.
[Bleak, Donoven, H & Hyde | 2022+]

The finite simple groups have a numerous stronger generation properties.
Do these infinite groups share these properties?
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