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The rotation by 180° is not
contained in a generating pair.
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Group of symmetries of a triangle

Every nontrivial element is
contained in a generating pair.
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Let G be a finite simple group.

> G has a generating pair (e.g. (123) & (1 ... n) if G = A, for odd n).
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> Every nontrivial element of G is contained in a generating pair.
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Theorem [BURNESS, GURALNICK & H | 2021]

Let G be a finite group. Then every nontrivial element of G is contained in a
generating pair iff every quotient of G other than G itself is cyclic.
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Thompson’s group V is the group of prefix substitutions of Cantor space, e.g.
_>
_>

_)

> Vs an infinite simple group and it has a generating pair.

Theorem [DoNOVEN & H | 2020]

Every nontrivial element of V is contained in a generating pair.

[This gave the first nontrivial example of an infinite group with this property.]
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[ The finite simple groups have a numerous stronger generation properties.‘
Do these infinite groups share these properties?




