How big can a minimal generating set be?

Scott Harper

University of St Andrews

New Perspectives in Pure Mathematics
University of Bristol
29 March 2023

LEVERHULME @Universityof
TRUST &Y St Andrews



Generating sets



Generating sets

Let G be a finite group.
A generating set of G is a minimal if no proper subset generates G.



Generating sets

Let G be a finite group.
A generating set of G is a minimal if no proper subset generates G.

Examples
16=C¢




Generating sets

Let G be a finite group.
A generating set of G is a minimal if no proper subset generates G.

Examples
1 G=C; aminimal generating set is a basis of IFj



Generating sets

Let G be a finite group.
A generating set of G is a minimal if no proper subset generates G.

Examples
1 G=C; aminimal generating set is a basis of IFj

2 G:Sn
(n>3)



Generating sets

Let G be a finite group.
A generating set of G is a minimal if no proper subset generates G.

Examples
1 G=C; aminimal generating set is a basis of IFj

26=5, G={((12),(12 ... n))
(n>3)



Generating sets

Let G be a finite group.
A generating set of G is a minimal if no proper subset generates G.

Examples
1 G=C; aminimal generating set is a basis of IFj

26=S5, 6={((12),(12 ... n))
(n>3) 6=((12),(23),(34),...,(n-1n))



Generating sets

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G
m(G) for the maximum size of a minimal generating set of G

Examples
1 G=C; aminimal generating set is a basis of IFj

26=S5, 6={((12),(12 ... n))
(n>3) 6=((12),(23),(34),...,(n-1n))



Generating sets

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G
m(G) for the maximum size of a minimal generating set of G

Examples
1 G =C; aminimal generating set is a basis of IF} so d(G) = m(G) =n

26=S5, 6={((12),(12 ... n))
(n>3) 6=((12),(23),(34),...,(n-1n))



Generating sets

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G
m(G) for the maximum size of a minimal generating set of G

Examples
1 G =C; aminimal generating set is a basis of IF} so d(G) = m(G) =n
2G6=S5, 6={((12),(12 ... n)) so d(G) =2

(n>3) 6=((12),(23),(34),...,(n-1n))



Generating sets

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G
m(G) for the maximum size of a minimal generating set of G

Examples
1 G =C; aminimal generating set is a basis of IF} so d(G) = m(G) =n
2G6=S5, 6={((12),(12 ... n)) so d(G) =2

(n>3) 6=((12),(23),(34),...,(n-1n)) som(G) >n—1



Generating sets

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G
m(G) for the maximum size of a minimal generating set of G

Examples
1 G =C; aminimal generating set is a basis of IF} so d(G) = m(G) =n

2G6=S5, 6=((12),(12 ... n)) so d(G) =2
(n>3) 6=((12),(23),(34),...,(n-1n)) som(G) >n—1

Theorem (Whiston | 2000)
Ifn > 3,then m(S,) =n—1.




Generating sets

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G
m(G) for the maximum size of a minimal generating set of G

Examples
1 G =C; aminimal generating set is a basis of IF} so d(G) = m(G) =n

2G6=S5, 6=((12),(12 ... n)) so d(G) =2
(n>3) 6=((12),(23),(34),...,(n-1n)) som(G) >n—1

Theorem (Whiston | 2000)

If n > 3, then m(S,) =n—1and m(A,) =n—2.




Generating sets

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G
m(G) for the maximum size of a minimal generating set of G

Examples
1 G =C; aminimal generating set is a basis of IF} so d(G) = m(G) =n

2G6=S5, 6=((12),(12 ... n)) so d(G) =2
(n>3) 6=((12),(23),(34),...,(n-1n)) som(G) >n—1

Theorem (Whiston | 2000)

If n > 3, then m(S,) =n—1and m(A,) =n—2.

Theorem (Tarski | 1975)
For all d(G) < k < m(G), the group G has a minimal generating set of size k.
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Theorem (Steinberg | 1962 + CFSG)
If G is a finite simple group, then d(G) < 2

Theorem (Whiston & Saxl | 2002)
If p is prime, then 2 + w(f) < m(PSLy(p')) < max{2 + w(f), 6}.

Theorem (H | 2023)

If G is a finite simple group of Lie type of rank r over IF s, where p is prime,
then 2r + w(f) < m(G) < a(2r + w(f))®. [e.g. a =10° & b = 10]

11...00 ...00 0...00 ...00
01...00 ...00 1...00 ...00
eg.Ifn > 2, PSLy(p) = <[ P z), ( RN 5),..., ( P z), ( s )>
00...10 00...10 00...11 00...10
00...01 00...01 00...01 00...11

Write w(n) for the number of distinct prime divisors of n.
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Let G act faithfully on a finite set X.
A subset {xq,...,Xn} C X is a base if the pointwise stabiliser G(x,

Write: b(G, X) for the minimum size of a (minimal) base for G on X
B(G, X) for the maximum size of a minimal base for G on X

Examples
1 Let G = GL,(F) act on X = F". Then a minimal base is just a basis of F".
Therefore b(G, X) = B(G, X) = n.

2 Let G = PGL,(F) acton X = {{(v1),...,(vn)} | {v1,...,vn} a basis of F"}.

Then b(G,X) =2 & B(G,X) >n—1.
leg. {er,e2,e3,e,}, {er,(e1+e),(e1+e+e3) (e1+er+e3+e,)}
{(e1+ey), e, e5,e,}, {er,(e2+e3),e3,es}, {e1,e, (e3+es), e,}]

OIILLil 118 s there a minimal base of size k for all b(G, X) < k < B(G, X)?

)







Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard
action on X, then b(G, X) < 7with equality ifand only if G = My, and |X| = 24.




Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard
action on X, then b(G, X) < 7with equality ifand only if G = My, and |X| = 24.

If Gis a finite almost simple group of Lie type of rank r over IF ;s with a faithful
primitive action on X, then
(@) B(G,X)< ar® +w(f) [H]2023]

[eg.a=177& b = 8]




Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard
action on X, then b(G, X) < 7with equality ifand only if G = My, and |X| = 24.

If Gis a finite almost simple group of Lie type of rank r over IF ;s with a faithful
primitive action on X, then
(@) B(G,X)< ar® +w(f) [H]2023]

[eg.a=177& b = 8]

Write: w(n) for the number of distinct prime divisors of n



Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard
action on X, then b(G, X) < 7with equality ifand only if G = My, and |X| = 24.

If Gis a finite almost simple group of Lie type of rank r over IF ;s with a faithful
primitive action on X, then
(@) B(G,X)< ar® +w(f) [H]2023]

[eg.a=177& b = 8]

Write: w(n) for the number of distinct prime divisors of n

Connection A stronger version of (a) is a crucial ingredient for proving the
upper bound on m(G) for almost simple groups Lie type G.



Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard
action on X, then b(G, X) < 7with equality ifand only if G = My, and |X| = 24.

If Gis a finite almost simple group of Lie type of rank r over IF ;s with a faithful
primitive action on X, then

(@) B(G,X)< ar® +w(f) [H]2023]

[eg.a=177& b = 8]

Write: w(n) for the number of distinct prime divisors of n

Connection A stronger version of (a) is a crucial ingredient for proving the
upper bound on m(G) for almost simple groups Lie type G.



Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard
action on X, then b(G, X) < 7with equality ifand only if G = My, and |X| = 24.

If Gis a finite almost simple group of Lie type of rank r over IF ;s with a faithful
primitive action on X, then

(@) B(G,X)< ar® +w(f) [H]2023]
(b) 1(G,X) <ar®+Q(f) [Gill & Liebeck | 2022] [eg.a=177& b = 8]

Write: w(n) for the number of distinct prime divisors of n

Connection A stronger version of (a) is a crucial ingredient for proving the
upper bound on m(G) for almost simple groups Lie type G.



Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard
action on X, then b(G, X) < 7with equality ifand only if G = My, and |X| = 24.

If Gis a finite almost simple group of Lie type of rank r over IF ;s with a faithful
primitive action on X, then

(@) B(G,X)< ar® +w(f) [H]2023]
(b) 1(G,X) <ar®+Q(f) [Gill & Liebeck | 2022] [eg.a=177& b = 8]

Write: w(n) for the number of distinct prime divisors of n
Q(n) for the number of prime divisors of n with multiplicity

Connection A stronger version of (a) is a crucial ingredient for proving the
upper bound on m(G) for almost simple groups Lie type G.
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The connection

Let G be an almost simple group of Lie type of rank r over IF ;.

Let S be a minimal generating set for G.
Claim [S| is smalli.e. |S| < a(r + w(f))P.

Forx € S, fix (S\ x) < My < G.

max

Lemma (o My < ﬂxes\y M, forally € S.

A version of (a) implies that a small number of the M, are conjugate.
We're done if there is a small number of conjugacy classes of G.

By applying [Aschbacher | 1986] and [Liebeck & Seitz | 1990] there is just a
small number of known classes, plus other almost simple groups that are:

1 of small order - we're also done

2 of Lie type of smaller rank - we apply induction.
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Theorem (H | 2023)
If G is finite, then m(G) < a(}_, prime d(Gp))®- [e.g.a=10" & b = 10]

T

Theorem (H | 2023)

If G is a finite almost simple group of Lie type of rank r over IF , for prime p,
then m(G) < a(r + w(f))®. [e.g. a =10 & b = 10]

Theorem (H | 2023)

If G is a finite almost simple group of Lie type of rank r over IF -, for prime p,
acting primitively on X, then B(G, X) < ar® + w(f). leg.a=177&b = 8]




