How big can a minimal generating set be?

Scott Harper

University of St Andrews

British Mathematical Colloquium
University of Manchester
17 June 2024

Let G be a finite group.

Let G be a finite group.

$$1 G = C_p^n$$

Let G be a finite group.

A generating set of G is a **minimal** if no proper subset generates G.

1 $G = C_p^n$ a minimal generating set is a basis of \mathbb{F}_p^n

Let G be a finite group.

- **1** $G = C_p^n$ a minimal generating set is a basis of \mathbb{F}_p^n
- 2 $G = S_n$ $(n \ge 3)$

Let G be a finite group.

- **1** $G = C_p^n$ a minimal generating set is a basis of \mathbb{F}_p^n
- **2** $G = S_n$ $G = \langle (12), (12 ... n) \rangle$ $(n \ge 3)$

Let G be a finite group.

- **1** $G = C_p^n$ a minimal generating set is a basis of \mathbb{F}_p^n
- **2** $G = S_n$ $G = \langle (12), (12 \dots n) \rangle$

$$(n \geqslant 3)$$
 $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G m(G) for the maximum size of a minimal generating set of G

- **1** $G = C_p^n$ a minimal generating set is a basis of \mathbb{F}_p^n
- **2** $G = S_n$ $G = \langle (12), (12 \dots n) \rangle$ $(n \ge 3)$ $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G m(G) for the maximum size of a minimal generating set of G

- **1** $G = C_p^n$ a minimal generating set is a basis of \mathbb{F}_p^n so d(G) = m(G) = n**2** $G = S_n$ $G = \langle (12), (12 \dots n) \rangle$
- $(n \geqslant 3)$ $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of Gm(G) for the maximum size of a minimal generating set of G

 $(n \geqslant 3)$ $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$

1
$$G = C_p^n$$
 a minimal generating set is a basis of \mathbb{F}_p^n so $d(G) = m(G) = n$
2 $G = S_n$ $G = \langle (12), (12 \dots n) \rangle$ so $d(G) = 2$

Let G be a finite group.

A generating set of G is a **minimal** if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G m(G) for the maximum size of a minimal generating set of G

1
$$G = C_p^n$$
 a minimal generating set is a basis of \mathbb{F}_p^n so $d(G) = m(G) = n$
2 $G = S_n$ $G = \langle (12), (12 \dots n) \rangle$ so $d(G) = 2$

2
$$G = S_n$$
 $G = \langle (12), (12 \dots n) \rangle$ so $d(G) = 2$ $(n \ge 3)$ $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$ so $m(G) \ge n-1$

$$(n \geqslant 3)$$
 $G = \langle (12), (23), (34), \dots, (n-1 n) \rangle$ so $m(G) \geqslant n-1$

Let G be a finite group.

A generating set of G is a **minimal** if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G m(G) for the maximum size of a minimal generating set of G

1
$$G = C_p^n$$
 a minimal generating set is a basis of \mathbb{F}_p^n so $d(G) = m(G) = n$

2
$$G = S_n$$
 $G = \langle (12), (12 \dots n) \rangle$ so $d(G) = 2$ $(n \ge 3)$ $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$ so $m(G) \ge n-1$

$$(n \geqslant 3)$$
 $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$ so $m(G) \geqslant n-1$

Theorem (Whiston | 2000)

If $n \ge 3$, then $m(S_n) = n - 1$.

Let G be a finite group.

A generating set of G is a minimal if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of Gm(G) for the maximum size of a minimal generating set of G

1
$$G = C_p^n$$
 a minimal generating set is a basis of \mathbb{F}_p^n so $d(G) = m(G) = n$

2
$$G = S_n$$
 $G = \langle (12), (12 \dots n) \rangle$ so $d(G) = 2$ $(n \ge 3)$ $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$ so $m(G) \ge n-1$

If $n \ge 3$, then $m(S_n) = n - 1$ and $m(A_n) = n - 2$.

Let G be a finite group.

A generating set of G is a **minimal** if no proper subset generates G.

Write: d(G) for the minimum size of a (minimal) generating set of G m(G) for the maximum size of a minimal generating set of G

1
$$G = C_p^n$$
 a minimal generating set is a basis of \mathbb{F}_p^n so $d(G) = m(G) = n$

2
$$G = S_n$$
 $G = \langle (12), (12 \dots n) \rangle$ so $d(G) = 2$ $(n \ge 3)$ $G = \langle (12), (23), (34), \dots, (n-1n) \rangle$ so $m(G) \ge n-1$

If $n \ge 3$, then $m(S_n) = n - 1$ and $m(A_n) = n - 2$.

Theorem (Tarski | 1975)

For all $d(G) \leqslant k \leqslant m(G)$, the group G has a minimal generating set of size k.

If G is a finite simple group, then $d(G) \leqslant 2$.

If G is a finite simple group, then $d(G) \leqslant 2$.

Theorem (Whiston & Saxl | 2002)

If p is prime, then $2 + \omega(f) \leqslant m(\mathsf{PSL}_2(p^f)) \leqslant \max\{2 + \omega(f), 6\}$.

If G is a finite simple group, then $d(G) \leqslant 2$.

Theorem (Whiston & Saxl | 2002)

If p is prime, then $2 + \omega(f) \leqslant m(\mathsf{PSL}_2(p^f)) \leqslant \max\{2 + \omega(f), 6\}$.

Write $\omega(\mathbf{n})$ for the number of distinct prime divisors of n.

If G is a finite simple group, then $d(G) \leqslant 2$.

Theorem (Whiston & Saxl | 2002)

If p is prime, then $2 + \omega(f) \leqslant m(\mathsf{PSL}_2(p^f)) \leqslant \max\{2 + \omega(f), 6\}$.

Theorem (H | 2023)

If G is a finite simple group of Lie type of rank r over \mathbb{F}_{p^f} , where p is prime, then $2r + \omega(f) \leqslant m(G) \leqslant a(2r + \omega(f))^b$.

Write $\omega(\mathbf{n})$ for the number of distinct prime divisors of n.

If G is a finite simple group, then $d(G) \leq 2$.

Theorem (Whiston & Saxl | 2002)

If p is prime, then $2+\omega(f)\leqslant m(\operatorname{PSL}_2(p^f))\leqslant \max\{2+\omega(f),6\}.$

Theorem (H | 2023)

If G is a finite simple group of Lie type of rank r over \mathbb{F}_{p^f} , where p is prime, then $2r + \omega(f) \leq m(G) \leq a(2r + \omega(f))^b$. [e.g. $a = 10^5 \& b = 10$]

Write $\omega(\mathbf{n})$ for the number of distinct prime divisors of n.

If G is a finite simple group, then $d(G) \leqslant 2$.

Theorem (Whiston & Saxl | 2002)

If p is prime, then $2 + \omega(f) \leqslant m(\mathsf{PSL}_2(p^f)) \leqslant \max\{2 + \omega(f), 6\}$.

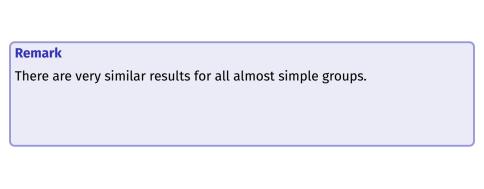
Theorem (H | 2023)

If G is a finite simple group of Lie type of rank r over \mathbb{F}_{p^f} , where p is prime, then $2r + \omega(f) \leq m(G) \leq a(2r + \omega(f))^b$. [e.g. $a = 10^5 \& b = 10$]

e.g.
$$PSL_3(p^{12}) = \left\langle \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} x & 0 & 0 \\ 0 & x^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} y & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle$$

where
$$\operatorname{IF}_{p^4}^\times = \langle x \rangle$$
 and $\operatorname{IF}_{p^3}^\times = \langle y \rangle$

Write $\omega(n)$ for the number of distinct prime divisors of n.



There are very similar results for all almost simple groups.

A group G is almost simple if $G_0 \leqslant G \leqslant \operatorname{Aut}(G_0)$ for nonabelian simple G_0 .

There are very similar results for all almost simple groups.

A group G is almost simple if $G_0 \leqslant G \leqslant \operatorname{Aut}(G_0)$ for nonabelian simple G_0 .

e.g.
$$G_0 = A_n$$
 and $G = S_n$,

There are very similar results for all almost simple groups.

e.g. $G_0 = A_n$ and $G = S_n$, $G_0 = PSL_n(q)$ and $G = PGL_n(q)$,

A group G is almost simple if $G_0 \leqslant G \leqslant \operatorname{Aut}(G_0)$ for nonabelian simple G_0 .

There are very similar results for all almost simple groups.

A group G is almost simple if $G_0 \leq G \leq \operatorname{Aut}(G_0)$ for nonabelian simple G_0 .

A group G is almost simple if
$$G_0 \leqslant G \leqslant \operatorname{Aut}(G_0)$$
 for nonabelian simple G_0 .
e.g. $G_0 = A_n$ and $G = S_n$, $G_0 = \operatorname{PSL}_n(q)$ and $G = \operatorname{PGL}_n(q)$, $G_0 = G = \operatorname{PSL}_n(q)$

G is
$$C_p^n$$
 $d(G) = m(G) = n$

G is
$$C_p^n$$
 $d(G) = m(G) = n$

G is a p-group
$$d(G) = m(G)$$

Question Are d(G) and m(G) controlled by the Sylow subgroups of G?

G is
$$C_p^n$$
 $d(G) = m(G) = n$

G is a p-group
$$d(G) = m(G)$$

G is nilpotent

Question Are d(G) and m(G) controlled by the Sylow subgroups of G?

G is
$$C_p^n$$
 $d(G) = m(G) = n$

G is a p-group
$$d(G) = m(G)$$

 $[G = G_{p_1} \times \cdots \times G_{p_k}]$ where G_p is a Sylow p-subgroup]

$$G$$
 is C_p^n $d(G) = m(G) = n$
 G is a p -group $d(G) = m(G)$
 G is nilpotent $d(G) = \max_p \operatorname{prime} d(G_p) \otimes m(G) = \sum_p \operatorname{prime} d(G_p)$
 $[G = G_{p_1} \times \cdots \times G_{p_k} \text{ where } G_p \text{ is a Sylow } p\text{-subgroup}]$

Question Are d(G) and m(G) controlled by the Sylow subgroups of G?

 $[G = G_{p_1} \times \cdots \times G_{p_b}]$ where G_p is a Sylow p-subgroup]

$$G$$
 is C_p^n $d(G) = m(G) = n$
 G is a p -group $d(G) = m(G)$
 G is nilpotent $d(G) = \max_{p \text{ prime}} d(G_p) \& m(G) = \sum_{p \text{ prime}} d(G_p)$

Theorem (Guralnick // Lucchini | 1989)

If G is finite, then $d(G) \leqslant \max_{p \text{ prime}} d(G_p) + 1$.

Question Are d(G) and m(G) controlled by the Sylow subgroups of G?

$$G ext{ is } C_p^n \qquad d(G) = m(G) = n$$
 $G ext{ is a } p ext{-group} \quad d(G) = m(G)$

$$G$$
 is nilpotent $d(G) = \max_{p \text{ prime}} d(G_p) \& m(G) = \sum_{p \text{ prime}} d(G_p)$
 $[G = G_{p_1} \times \cdots \times G_{p_k} \text{ where } G_p \text{ is a Sylow } p\text{-subgroup}]$

Theorem (Guralnick // Lucchini | 1989)

If G is finite, then $d(G) \leqslant \max_{p \text{ prime}} d(G_p) + 1$.

However, the bound $m(G) \leq \sum_{p \text{ prime}} d(G_p) + 1$ is true for soluble groups G but is false in general [Lucchini, Moscatiello, Spiga | 2021].

Application: a local-to-global theorem

Question Are d(G) and m(G) controlled by the Sylow subgroups of G?

G is
$$C_p^n$$
 $d(G) = m(G) = n$

G is a p-group
$$d(G) = m(G)$$

G is nilpotent
$$d(G) = \max_{p \text{ prime}} d(G_p) \& m(G) = \sum_{p \text{ prime}} d(G_p)$$

 $[G = G_{p_1} \times \cdots \times G_{p_p} \text{ where } G_p \text{ is a Sylow } p\text{-subgroup}]$

Theorem (Guralnick // Lucchini | 1989)

If G is finite, then $d(G) \leqslant \max_{p \text{ prime}} d(G_p) + 1$.

However, the bound $m(G) \leq \sum_{p \text{ prime}} d(G_p) + 1$ is true for soluble groups G but is false in general [Lucchini, Moscatiello, Spiga | 2021].

Theorem (H | 2023)

If G is finite, then $m(G) \leqslant a(\sum_{p \text{ prime}} d(G_p))^b$. [e.g. $a = 10^{10} \& b = 10$]

Let G act faithfully on a finite set X.

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a base if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a base if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a base if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

Write: b(G, X) for the minimum size of a (minimal) base for G on XB(G, X) for the maximum size of a minimal base for G on X

1 Let $G = GL_n(F)$ act on $X = F^n$. Then a minimal base is just a basis of F^n .

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a base if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

Write: b(G, X) for the minimum size of a (minimal) base for G on X B(G, X) for the maximum size of a minimal base for G on X

1 Let $G = GL_n(F)$ act on $X = F^n$. Then a minimal base is just a basis of F^n .

Therefore b(G, X) = B(G, X) = n.

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a base if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

Write: b(G, X) for the minimum size of a (minimal) base for G on X

B(G, X) for the maximum size of a minimal base for G on X

- 1 Let $G = GL_n(F)$ act on $X = F^n$. Then a minimal base is just a basis of F^n . Therefore b(G, X) = B(G, X) = n.
- 2 Let $G = \operatorname{PGL}_n(F)$ act on $X = \{\{\langle v_1 \rangle, \ldots, \langle v_n \rangle\} \mid \{v_1, \ldots, v_n\}$ a basis of $F^n\}$.

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a base if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

- **1** Let $G = GL_n(F)$ act on $X = F^n$. Then a minimal base is just a basis of F^n .
 - Therefore b(G, X) = B(G, X) = n.
- **2** Let $G = \operatorname{PGL}_n(F)$ act on $X = \{\{\langle v_1 \rangle, \dots, \langle v_n \rangle\} \mid \{v_1, \dots, v_n\}$ a basis of $F^n\}$. Then b(G, X) = 2 & $B(G, X) \ge n 1$.

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a base if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

- 1 Let $G = GL_n(F)$ act on $X = F^n$. Then a minimal base is just a basis of F^n . Therefore b(G, X) = B(G, X) = n.
- 2 Let $G = \operatorname{PGL}_n(F)$ act on $X = \{\{\langle v_1 \rangle, \dots, \langle v_n \rangle\} \mid \{v_1, \dots, v_n\}$ a basis of $F^n\}$.
- Then $b(G,X) = 2 \& B(G,X) \ge n-1$. [e.g. $\{e_1, e_2, e_3, e_4\}$, $\{e_1, (e_1 + e_2), (e_1 + e_2 + e_3), (e_1 + e_2 + e_3 + e_4)\}$

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a base if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

- **1** Let $G = GL_n(F)$ act on $X = F^n$. Then a minimal base is just a basis of F^n . Therefore b(G, X) = B(G, X) = n.
- **2** Let $G = \operatorname{PGL}_n(F)$ act on $X = \{\{\langle v_1 \rangle, \dots, \langle v_n \rangle\} \mid \{v_1, \dots, v_n\}$ a basis of $F^n\}$. Then b(G, X) = 2 & $B(G, X) \geqslant n 1$.
 - [e.g. $\{e_1, e_2, e_3, e_4\}$, $\{e_1, (e_1 + e_2), (e_1 + e_2 + e_3), (e_1 + e_2 + e_3 + e_4)\}$ $\{(e_1 + e_2), e_2, e_3, e_4\}$, $\{e_1, (e_2 + e_3), e_3, e_4\}$, $\{e_1, e_2, (e_3 + e_4), e_4\}$]

Let G act faithfully on a finite set X.

A subset $\{x_1, \ldots, x_n\} \subseteq X$ is a **base** if the pointwise stabiliser $G_{(x_1, \ldots, x_n)}$ is 1.

Write: b(G, X) for the minimum size of a (minimal) base for G on XB(G, X) for the maximum size of a minimal base for G on X

- 1 Let $G = GL_n(F)$ act on $X = F^n$. Then a minimal base is just a basis of F^n . Therefore b(G, X) = B(G, X) = n.
- **2** Let $G = PGL_n(F)$ act on $X = \{\{\langle v_1 \rangle, \ldots, \langle v_n \rangle\} \mid \{v_1, \ldots, v_n\}$ a basis of $F^n\}$. Then b(G, X) = 2 & $B(G, X) \ge n 1$. [e.g. $\{e_1, e_2, e_3, e_4\}$, $\{e_1, (e_1 + e_2), (e_1 + e_2 + e_3), (e_1 + e_2 + e_3 + e_4)\}$

 $\{(e_1+e_2), e_2, e_3, e_4\}, \{e_1, (e_2+e_3), e_3, e_4\}, \{e_1, e_2, (e_3+e_4), e_4\}$

Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard action on X, then $b(G, X) \leq 7$ with equality if and only if $G = M_{24}$ and |X| = 24.

Write I(G, X) for the maximum size of an **irredundant base** $\{x_1, \ldots, x_n\} \subseteq X$, i.e. $G > G_{(x_1)} > G_{(x_1,x_2)} > \cdots > G_{(x_1,\ldots,x_n)} = 1$. Note that $B(G,X) \leqslant I(G,X)$.

Write I(G, X) for the maximum size of an irredundant base $\{x_1, \ldots, x_n\} \subseteq X$, i.e. $G > G_{(x_1)} > G_{(x_1,x_2)} > \cdots > G_{(x_1,\dots,x_n)} = 1$. Note that $B(G,X) \leqslant I(G,X)$.

Theorem

If G is a finite almost simple group of Lie type of rank r over \mathbb{F}_{n^f} with a faithful primitive action on X, then

(a) $I(G,X) \leqslant ar^b + \Omega(f)$ [Gill & Liebeck | 2022]

[e.g. a = 177 & b = 8]

Write I(G, X) for the maximum size of an irredundant base $\{x_1, \ldots, x_n\} \subseteq X$, i.e. $G > G_{(x_1)} > G_{(x_1,x_2)} > \cdots > G_{(x_1,\dots,x_n)} = 1$. Note that $B(G,X) \leqslant I(G,X)$.

Theorem

primitive action on X, then
(a)
$$I(G,X) \leq ar^b + \Omega(f)$$
 [Gill & Liebeck | 2022]

(a)
$$I(G, X) \leq ar^b + \Omega(f)$$
 [Gill & Liebeck | 2022]

(b)
$$B(G,X) \leq ar^b + \omega(f)$$
 [H | 2023] [e.g. $a = 177 \& b = 8$]

Write I(G, X) for the maximum size of an irredundant base $\{x_1, \ldots, x_n\} \subseteq X$, i.e. $G > G_{(x_1)} > G_{(x_1,x_2)} > \cdots > G_{(x_1,\dots,x_n)} = 1$. Note that $B(G,X) \leqslant I(G,X)$.

Theorem

primitive action on
$$X$$
, then
(a) $I(G,X) \leqslant ar^b + \Omega(f)$ [Gill & Liebeck | 2022]

(b)
$$B(G,X) \le H(G,X) \le ar^b + \omega(f)$$
 [H | 2023] [e.g. $a = 177 \& b = 8$]

Write I(G, X) for the maximum size of an irredundant base $\{x_1, \ldots, x_n\} \subseteq X$, i.e. $G > G_{(x_1)} > G_{(x_1,x_2)} > \cdots > G_{(x_1,\dots,x_n)} = 1$. Note that $B(G,X) \leqslant I(G,X)$.

Theorem

(a)
$$I(G,X) \leqslant ar^b + \Omega(f)$$
 [Gill & Liebeck | 2022]

(b)
$$B(G,X) \leqslant ar^b + \omega(f)$$
 [H | 2023] [e.g. $a = 177 \& b = 8$]

Notice
$$B(G, G/H)$$
 = maximum size of a subset $A \subseteq G$ such that
$$1 = \bigcap_{g \in A} H^g$$

Write I(G, X) for the maximum size of an irredundant base $\{x_1, \ldots, x_n\} \subseteq X$, i.e. $G > G_{(x_1)} > G_{(x_1,x_2)} > \cdots > G_{(x_1,\dots,x_n)} = 1$. Note that $B(G,X) \leq I(G,X)$.

Theorem

(a)
$$I(G,X) \leqslant ar^b + \Omega(f)$$
 [Gill & Liebeck | 2022]

(b)
$$B(G,X) \leqslant ar^b + \omega(f)$$
 [H | 2023] [e.g. $a = 177 \& b = 8$]

Notice
$$B(G, G/H)$$
 = maximum size of a subset $A \subseteq G$ such that
$$1 = \cap_{g \in A} H^g \text{ but } \cap_{g \in A} H^g < \cap_{g \in A'} H^g \text{ for all } A' \subsetneq A.$$

Write I(G, X) for the maximum size of an **irredundant base** $\{x_1, \ldots, x_n\} \subseteq X$, i.e. $G > G_{(x_1, x_2)} > \cdots > G_{(x_1, \ldots, x_n)} = 1$. Note that $B(G, X) \leq I(G, X)$.

Theorem

If G is a finite almost simple group of Lie type of rank r over \mathbb{F}_{p^f} with a faithful primitive action on X, then

- (a) $I(G,X) \leqslant ar^b + \Omega(f)$ [Gill & Liebeck | 2022]
- **(b)** $B(G,X) \le H(G,X) \le ar^b + \omega(f)$ [H | 2023] [e.g. a = 177 & b = 8]

Notice B(G, G/H) = maximum size of a subset $A \subseteq G$ such that $1 = \cap_{g \in A} H^g \text{ but } \cap_{g \in A} H^g < \cap_{g \in A'} H^g \text{ for all } A' \subsetneq A.$

Define H(G, G/H) = maximum size of a subset $A \subseteq G$ such that $\bigcap_{g \in A} H^g < \bigcap_{g \in A'} H^g$ for all $A' \subsetneq A$.

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leqslant a(r + \omega(f))^{10}$.

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leqslant a(r+\omega(f))^{10}$.

For $x \in S$, fix $\langle S \setminus x \rangle \leqslant M_X < G$.

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leq a(r + \omega(f))^{10}$.

For
$$x \in S$$
, fix $\langle S \setminus x \rangle \leqslant M_x < G$.

Lemma
$$\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$$
 for all $A' \subsetneq A \subseteq S$.

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leqslant a(r + \omega(f))^{10}$.

For $x \in S$, fix $\langle S \setminus x \rangle \leqslant M_x < G$.

Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G,G/M) \leqslant 177r^8 + \omega(f)$ for all M < G,

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leqslant a(r + \omega(f))^{10}$.

For $x \in S$, fix $\langle S \setminus x \rangle \leqslant M_X < G$.

Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G, G/M) \leq 177r^8 + \omega(f)$ for all M < G, so only this many M_x are in a given conjugacy class.

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leqslant a(r + \omega(f))^{10}$.

For $x \in S$, fix $\langle S \setminus x \rangle \leqslant M_x < G$.

Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G, G/M) \leq 177r^8 + \omega(f)$ for all M < G, so only this many M_x are in a given conjugacy class.

We are done if G has a small number of classes of maximal subgroups.

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|\mathsf{S}| \leqslant a(r+\omega(f))^{10}$.

For $x \in S$, fix $\langle S \setminus x \rangle \leqslant M_x < G$.

Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G, G/M) \leq 177r^8 + \omega(f)$ for all M < G, so only this many M_x are in a given conjugacy class.

We are done if G has a small number of classes of maximal subgroups.

Applying [Aschbacher | 1986] and [Liebeck & Seitz | 1990], each M_x is in one of at most $\alpha'(r+\omega(f))^2$ classes,

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leqslant a(r + \omega(f))^{10}$.

For $x \in S$, fix $\langle S \setminus x \rangle \leqslant M_X < G$.

Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G, G/M) \leq 177r^8 + \omega(f)$ for all M < G, so only this many M_x are in a given conjugacy class.

We are done if G has a small number of classes of maximal subgroups.

Applying [Aschbacher | 1986] and [Liebeck & Seitz | 1990], each M_x is in one of at most $a'(r+\omega(f))^2$ classes, or one $\langle S \setminus x \rangle$ is an almost simple group of:

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leq a(r + \omega(f))^{10}$.

For $x \in S$, fix $\langle S \setminus x \rangle \leqslant M_x < G$.

Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G, G/M) \leq 177r^8 + \omega(f)$ for all M < G, so only this many M_x are in a given conjugacy class.

We are done if G has a small number of classes of maximal subgroups.

Applying [Aschbacher | 1986] and [Liebeck & Seitz | 1990], each M_x is in one of at most $a'(r + \omega(f))^2$ classes, or one $\langle S \setminus x \rangle$ is an almost simple group of:

1 small order:

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leq a(r + \omega(f))^{10}$.

For
$$x \in S$$
, fix $\langle S \setminus x \rangle \leqslant M_X < G$.

Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G, G/M) \leq 177r^8 + \omega(f)$ for all M < G, so only this many M_x are in a given conjugacy class.

We are done if G has a small number of classes of maximal subgroups.

Applying [Aschbacher | 1986] and [Liebeck & Seitz | 1990], each M_x is in one of at most $a'(r + \omega(f))^2$ classes, or one $\langle S \setminus x \rangle$ is an almost simple group of:

- 1 small order:
- **2** Lie type of rank $r_0 < r$ over $\mathbb{F}_{p^{f_0}}$ with $f_0 \leqslant f$:

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leq a(r + \omega(f))^{10}$.

For
$$x \in S$$
, fix $\langle S \setminus x \rangle \leqslant M_X < G$.

Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G, G/M) \leq 177r^8 + \omega(f)$ for all M < G, so only this many M_x are in a given conjugacy class.

We are done if G has a small number of classes of maximal subgroups.

Applying [Aschbacher | 1986] and [Liebeck & Seitz | 1990], each M_x is in one of at most $a'(r + \omega(f))^2$ classes, or one $\langle S \setminus x \rangle$ is an almost simple group of:

- **1** small order: bound using length of $\langle S \setminus x \rangle$
- **2** Lie type of rank $r_0 < r$ over $\mathbb{F}_{p^{f_0}}$ with $f_0 \leqslant f$:

Let G be an almost simple group of Lie type of rank r over \mathbb{F}_{p^f} .

Let S be a minimal generating set. We'll show that $|S| \leqslant a(r + \omega(f))^{10}$.

For
$$x \in S$$
, fix $\langle S \setminus x \rangle \leqslant M_X < G$.

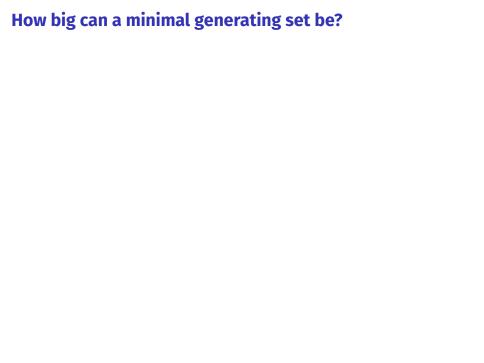
Lemma $\bigcap_{x \in A} M_x < \bigcap_{x \in A'} M_x$ for all $A' \subsetneq A \subseteq S$.

By [Gill & Liebeck | 2022, H | 2023], $H(G, G/M) \leq 177r^8 + \omega(f)$ for all M < G, so only this many M_x are in a given conjugacy class.

We are done if G has a small number of classes of maximal subgroups.

Applying [Aschbacher | 1986] and [Liebeck & Seitz | 1990], each M_x is in one of at most $a'(r + \omega(f))^2$ classes, or one $\langle S \setminus x \rangle$ is an almost simple group of:

- **1** small order: bound using length of $\langle S \setminus x \rangle$
- **2** Lie type of rank $r_0 < r$ over $\mathbb{F}_{p^{f_0}}$ with $f_0 \le f$: apply induction on r.



How big can a minimal generating set be?

Theorem (H | 2023)

If G is finite, then $m(G) \leqslant a(\sum_{p \text{ prime}} d(G_p))^b$. [e.g. $a = 10^{10} \& b = 10$]

How big can a minimal generating set be?

Theorem (H | 2023)

If G is finite, then $m(G) \leqslant a(\sum_{p \text{ prime}} d(G_p))^b$. [e.g. $a = 10^{10} \& b = 10$]

Theorem (H | 2023)

If G is a finite almost simple group of Lie type of rank r over \mathbb{F}_{p^f} , for prime p, then $m(G) \leqslant a(r + \omega(f))^b$. [e.g. $a = 10^5 \& b = 10$]

How big can a minimal generating set be?

Theorem (H | 2023)

If G is finite, then $m(G) \leqslant a(\sum_{p \text{ prime}} d(G_p))^b$. [e.g. $a = 10^{10} \& b = 10$]

Theorem (H | 2023)

If G is a finite almost simple group of Lie type of rank r over \mathbb{F}_{p^f} , for prime p, then $m(G) \leqslant a(r + \omega(f))^b$. [e.g. $a = 10^5 \& b = 10$]

Theorem (Gill & Liebeck | 2022, H | 2023)

If G is a finite almost simple group of Lie type of rank r over \mathbb{F}_{p^f} , for prime p, acting primitively on X, then $B(G,X) \leqslant ar^b + \omega(f)$. [e.g. a=177~&~b=8]