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Theorem (Whiston | 2000)

If n > 3, then m(S,) = n—1and m(A,) =n—2.

Theorem (Tarski | 1975)
For all d(G) < k < m(G), the group G has a minimal generating set of size k.
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” 110 100 100 100 X 00 y 00
e.g. PSL;(p") = (010),(110),(011),(010),(0 x'10>,<0 y'10>
001 001 001 011 00 1 070 1

where IFIDX4 = (x) and IFIDX3 = {y)

Write w(n) for the number of distinct prime divisors of n.
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Theorem (H | 2023)
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Theorem (Burness et al. | 2011)

If G is a finite almost simple group with a faithful primitive nonstandard
action on X, then b(G, X) < 7with equality ifand only if G = My, and |X| = 24.
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Forx € S, fix (S\ x) < My < G.

Lemma (), ., My < (ca Mx forallA’ CACS.
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Let G be an almost simple group of Lie type of rank r over IF .
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so only this many M, are in a given conjugacy class.
We are done if G has a small number of classes of maximal subgroups.

Applying [Aschbacher | 1986] and [Liebeck & Seitz | 1990], each M, is in one
of at most a’(r + w(f))? classes, or one (S \ x) is an almost simple group of:

1 small order: bound using length of (S \ x)

2 Lie type of rank ro < rover IF 5, with fo < f: apply induction onr.
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Theorem (H | 2023)

If G is a finite almost simple group of Lie type of rank r over IF , for prime p,
then m(G) < a(r + w(f))®. [e.g. a =10° & b = 10]

T

Theorem (Gill & Liebeck | 2022, H | 2023)

If G is a finite almost simple group of Lie type of rank r over IF , for prime p,
acting primitively on X, then B(G, X) < ar® + w(f). [eg.a =177 &b = 8]




