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A permutation is a derangement if it has no fixed points.

Theorem [Jordan | 1872]

Let 1 6= G 6 Sym(Ω) be finite and transitive. Then G has a derangement.

Proof

By transitivity, 1
|G|
∑
g∈G

fix(g) = 1; fix(id) > 1, so fix(g) = 0 for some g.

Remarks

> Finite is necessary: fails for FSym(N) 6 Sym(N).
> Transitive is necessary: fails for Sym(n− 1) 6 Sym(n).

Conjecture [Ellis & H | 2024]

Let 1 6= G 6 Sym(n) have two orbits of size n
2 . Then G has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.
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Theorem [Jordan | 1872]

No finite group is the union of conjugates of a proper subgroup.

Link G =
⋃
g∈G(H1 ∪ · · · ∪ Hk)g ⇔ no derangements on G/H1 t · · · t G/Hk

Examples

1 G = GLn(C)

=
⋃
g∈G B

g for Borel subgroup B of upper triang. matrices.

2 G = Spn(2) =
⋃
g∈G O+

n (2)g ∪
⋃
g∈G O−n (2)g. [Dye | 1979]

3 G = AGL1(p) = V:H

= V ∪
⋃
g∈G H

g since it is a Frobenius group.

Conjecture [Ellis & H | 2024]

No finite gp is the union of conjugates of two equal-sized proper subgroups.

Theorem [Ellis & H | 2024]

Conjecture holds if at least one of the subgroups is maximal.
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Conjecture [Ellis & H | 2024]

Let 1 6= G 6 Sym(n) have two orbits of size n
2 . Then G has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

The conjecture also holds if

> n
2 is a prime power

> |G| 6 1000: computation in Magma
> G is simple

: using [Bubboloni, Spiga & Weigel | 2024]

> G is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of H1,H2 < G.
Proof

Otherwise, without loss of generality, H1 and H2 are maximal and
hence normal, so G = H1 ∪ H2, but |H1 ∪ H2| < |H1|+ |H2| 6 |G|.
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Motivation

1 Previous work
No finite group G is the union of conjugates of H and Ha for a proper
subgroup H and an automorphism a of G. [Jehne |1977] & [Saxl | 1988]

(The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory
Let f ∈ Z[X] have no roots in Z.

Q Does f have a root modulo almost all primes?

Let f = f1 · · · fk for irred fi with root ai ∈ Q.

Let L = Q(a1, . . . , ak).

A Yes, i� Gal(L/Q) =
⋃
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3 Graph theory
Let Γ be a regular graph such that Aut(Γ)
is transitive on edges.

Then Aut(Γ) is transitive on vertices or
has two equal-sized orbits on vertices.

Conjecture Aut(Γ) has a derangement.

True when Γ is 3- or 4-regular.
[Giudici, Potočnik & Verret | 2014]

4 Extremal combinatorics
Erdős–Ko–Rado theorem for intersecting families of permutations.

[Nakajima | 2022]
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Proof Ideas

Reduction Lemma We can assume G is faithful and primitive on Ω1.

Via O’Nan–Scott Theorem, split by type of G 6 Sym(Ω1).

If G 6 Sym(Ω1) is almost simple, then use [Bubbloni, Spiga & Weigel | 2024].

Hardest remaining case: G 6 Sym(Ω1) is a�ne.

Write G = Fdp:H where H 6 GLd(p) irreducible.

Theorem F [Ellis & H | 2024]

Let H 6 GLd(p) be irreducible. Assume H acts primitively on Ω and pd
∣∣ |Ω|.

There is h ∈ H that is a derangement on Ω and fixes a nonzero vector of Fdp.
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Theorem [Fein, Kantor & Schacher | 1981]

Let H be finite. Assume H acts transitively on Ω.

Then there is some prime p such thatH has a derangement of p-power order.

Which prime p works? We need p
∣∣ |Ω|. Not su�cient.

Isbell’s Conjecture

[Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let H be finite. Assume H acts transitively on Ω and |Ω| = pab with a � b.
Then H has a derangement of p-power order.

Theorem F

Let H 6 GLd(p) be irreducible. Assume H acts primitively on Ω and pd
∣∣ |Ω|.

There is h ∈ H that is a derangement on Ω and fixes a nonzero vector of Fdp.

If h has p-power order, then h is unipotent, so it fixes a nonzero vector.

Example

Let H = GLd/2(p2) 6 GLd(p). Let Ω = H/M where M = GLd/2(p).
Then pd

∣∣ |Ω| but every p-element of H is conjugate to an element of M.
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∣∣ |Ω|.

There is h ∈ H that is a derangement on Ω and fixes a nonzero vector of Fdp.

Action of H on Ω has a kernel K. Then H is some extension of H = H/K.

Via O’Nan–Scott Theorem, split by type of H 6 Sym(Ω).

Assume H 6 Sym(Ω) is almost simple or product action,

as otherwise H
has a derangement of order p. [Burness, Giudici & Wilson | 2011]

Have projective rep λ : H/Z(H)→ PGLd(p). Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep H→ PGLd(p).

Example H = PSLn(p)

|H| = p
1
2n(n−1)(p2 − 1) · · · (pd − 1)

Note pd divides |Ω| = |H : Hω| which divides |H|,
Then d = n and λ is the lift of the natural rep (or its dual). [Liebeck | 1985]

Argue directly, e.g. if Hω ≈ SLn/2(p2), choose h with odd-dim fixed space.
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Let λ : G→ PGLd(k) be a nontrivial irred projective rep with k = k.
Let N P G with G = G/N finite simple. Assume H < G for all H < G.

Question When is λ a lift of a projective rep of G?

Example

Assume char k 6= 2. Then 22n. Sp2n(2) 4 PGL2n(k) irreducible.
However, Sp2n(2) 4 PGLd(k) implies d > 2n. [Landazuri & Seitz | 1974]

Let nS be the minimum n such that S 4 Sp2n(2).

Theorem [Feit & Tits | 1978]

Assume d < 2nG if char k 6= 2, and d is min possible. Then λ lifts from G.

Theorem [H & Liebeck | 2024]

Assume d < 2nG if char k 6= 2, and d < P(G). Then λ lifts from G.

Example

Let G = PSLn(pf ). Assume char k = p and d < 1
2n(n− 1).

Then d < P(G) and d < 2nG , so λ is a lift of an irred proj rep of G of dim d.
Hence, λ is a lift of the natural rep or its dual.
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Summary

Motivated by a theorem of [Jordan | 1870] we conjecture:

Conjecture [Ellis & H | 2024]

Let 1 6= G 6 Sym(n) have two orbits of size n
2 . Then G has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [Ellis & H | 2024]

Let 1 6= G 6 Sym(n) with orbits Ω1 and Ω2. Assume |Ω1|
∣∣ |Ω2|.

Assume G is primitive on Ω2. Then G has a derangement.

At the heart of the proof is a linear variant on [Isbell’s Conjecture | 1960]:

Theorem [Ellis & H | 2024]

Let H 6 GLd(p) be irreducible. Assume H acts primitively on Ω and pd
∣∣ |Ω|.

There is h ∈ H that is a derangement on Ω and fixes a nonzero vector of Fdp.

Key to this are results of [H & Liebeck | 2024] extending [Feit & Tits | 1978].
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