Is a finite group ever the union of conjugates of two equal-sized proper subgroups?

Scott Harper

University of St Andrews

Topics in Group Theory University of Padova 10 September 2024

Joint work with David Ellis (University of Bristol)

Mathematics > Group Theory

[Submitted on 28 Aug 2024]

Orbits of permutation groups with no derangements

David Ellis, Scott Harper

Theorem [JORDAN | 1872]

Let $1 \neq G \leqslant$ Sym(Ω) be finite and transitive. Then *G* has a derangement.

Theorem [JORDAN | 1872]

Let $1 \neq G \leqslant$ Sym(Ω) be finite and transitive. Then *G* has a derangement.

Proof

Theorem [JORDAN | 1872]

Let 1 \neq *G* \leq Sym(Ω) be finite and transitive. Then *G* has a derangement.

Proof By transitivity, $\frac{1}{|G|}$ $\sum_{i \in G}$ *g*∈*G* $fix(g) = 1;$

Theorem [JORDAN | 1872]

Let 1 \neq *G* \leq Sym(Ω) be finite and transitive. Then *G* has a derangement.

Proof By transitivity, $\frac{1}{|G|}$ $\sum_{i \in G}$ *g*∈*G* $\operatorname{\sf fix}(g) =$ 1; $\operatorname{\sf fix}(\operatorname{\sf id}) >$ 1, so $\operatorname{\sf fix}(g) = 0$ for some $g.$

Theorem [JORDAN | 1872]

Let 1 \neq *G* \leq Sym(Ω) be finite and transitive. Then *G* has a derangement.

Proof By transitivity, $\frac{1}{|G|}$ $\sum_{i \in G}$ *g*∈*G* $\operatorname{\sf fix}(g) =$ 1; $\operatorname{\sf fix}(\operatorname{\sf id}) >$ 1, so $\operatorname{\sf fix}(g) = 0$ for some $g.$

Remarks

Theorem [JORDAN | 1872]

Let 1 \neq *G* \leq Sym(Ω) be finite and transitive. Then *G* has a derangement.

Proof By transitivity, $\frac{1}{|G|}$ $\sum_{i \in G}$ *g*∈*G* $\operatorname{\sf fix}(g) =$ 1; $\operatorname{\sf fix}(\operatorname{\sf id}) >$ 1, so $\operatorname{\sf fix}(g) = 0$ for some $g.$

Remarks

> Finite is necessary: fails for $\text{FSym}(\mathbb{N}) \leq \text{Sym}(\mathbb{N})$.

Theorem [JORDAN | 1872]

Let 1 \neq *G* \leq Sym(Ω) be finite and transitive. Then *G* has a derangement.

Proof By transitivity, $\frac{1}{|G|}$ $\sum_{i \in G}$ *g*∈*G* $\operatorname{\sf fix}(g) =$ 1; $\operatorname{\sf fix}(\operatorname{\sf id}) >$ 1, so $\operatorname{\sf fix}(g) = 0$ for some $g.$

Remarks

- **>** Finite is necessary: fails for $\text{FSym}(\mathbb{N}) \leq \text{Sym}(\mathbb{N})$.
- **>** Transitive is necessary: fails for Sym(*n* − 1) 6 Sym(*n*).

Theorem [Iordan | 1872]

Let 1 \neq *G* \leq Sym(Ω) be finite and transitive. Then *G* has a derangement.

Proof By transitivity, $\frac{1}{|G|}$ $\sum_{i \in G}$ *g*∈*G* $\operatorname{\sf fix}(g) =$ 1; $\operatorname{\sf fix}(\operatorname{\sf id}) >$ 1, so $\operatorname{\sf fix}(g) = 0$ for some $g.$

Remarks

- **>** Finite is necessary: fails for $\mathsf{FSym}(\mathbb{N}) \leqslant \mathsf{Sym}(\mathbb{N}).$
- **>** Transitive is necessary: fails for Sym(*n* − 1) 6 Sym(*n*).

Conjecture [Ellis & H | 2024]

Let 1 \neq $G \leqslant$ Sym (n) have two orbits of size $\frac{n}{2}.$ Then G has a derangement.

Theorem [Iordan | 1872]

Let 1 \neq *G* \leq Sym(Ω) be finite and transitive. Then *G* has a derangement.

Proof By transitivity, $\frac{1}{|G|}$ $\sum_{i \in G}$ *g*∈*G* $\operatorname{\sf fix}(g) =$ 1; $\operatorname{\sf fix}(\operatorname{\sf id}) >$ 1, so $\operatorname{\sf fix}(g) = 0$ for some $g.$

Remarks

- **>** Finite is necessary: fails for $\mathsf{FSym}(\mathbb{N}) \leqslant \mathsf{Sym}(\mathbb{N}).$
- **>** Transitive is necessary: fails for Sym(*n* − 1) 6 Sym(*n*).

Conjecture [Ellis & H | 2024]

Let 1 \neq $G \leqslant$ Sym (n) have two orbits of size $\frac{n}{2}.$ Then G has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

No finite group is the union of conjugates of a proper subgroup.

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

$$
1 \tG = GL_n(\mathbb{C})
$$

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$
G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g
$$
. [Dye | 1979]

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$
G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g
$$
. [Dye | 1979]

3 $G = AGL_1(p) = V:H$

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$
G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g
$$
. [Dye | 1979]

3 $G = AGL_1(p) = V$: $H = V ∪ ∪_{g∈G} H^g$ since it is a Frobenius group.

Theorem [Iordan | 1872]

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$
G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g
$$
. [Dye | 1979]

3 $G = AGL_1(p) = V$: $H = V ∪ ∪_{g∈G} H^g$ since it is a Frobenius group.

Conjecture [Ellis & H | 2024]

No finite gp is the union of conjugates of two equal-sized proper subgroups.

Theorem [Jordan 1872]

No finite group is the union of conjugates of a proper subgroup.

 \blacksquare \blacksquare $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$
G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g
$$
. [Dye | 1979]

3 $G = AGL_1(p) = V$: $H = V ∪ ∪_{g∈G} H^g$ since it is a Frobenius group.

Conjecture [Ellis & H | 2024]

No finite gp is the union of conjugates of two equal-sized proper subgroups.

Theorem [Ellis & H | 2024]

Conjecture holds if at least one of the subgroups is maximal.

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

The conjecture also holds if

 $\frac{n}{2}$ is a prime power

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple: using [Bubboloni, Spiga & Weigel | 2024]

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple: using [Bubboloni, Spiga & Weigel | 2024]
- **>** *G* is nilpotent

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

The conjecture also holds if

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple: using [Bubboloni, Spiga & Weigel | 2024]
- **>** *G* is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of $H_1, H_2 < G$.

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

The conjecture also holds if

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple: using [Bubboloni, Spiga & Weigel | 2024]
- **>** *G* is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of $H_1, H_2 < G$. **Proof**

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

The conjecture also holds if

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple: using [Bubboloni, Spiga & Weigel | 2024]
- **>** *G* is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of $H_1, H_2 < G$. **Proof** Otherwise, without loss of generality, H_1 and H_2 are maximal

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

The conjecture also holds if

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple: using [Bubboloni, Spiga & Weigel | 2024]
- **>** *G* is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of $H_1, H_2 < G$. **Proof** Otherwise, without loss of generality, H_1 and H_2 are maximal and hence normal,

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

The conjecture also holds if

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple: using [Bubboloni, Spiga & Weigel | 2024]
- **>** *G* is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of $H_1, H_2 < G$. **Proof** Otherwise, without loss of generality, H_1 and H_2 are maximal and hence normal, so $G = H_1 \cup H_2$,

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Theorem [Ellis & H | 2024]

Conjecture holds if *G* is primitive on at least one of the orbits.

The conjecture also holds if

- $\frac{n}{2}$ is a prime power
- \blacktriangleright $|G| \leqslant 1000$: computation in Magma
- **>** *G* is simple: using [Bubboloni, Spiga & Weigel | 2024]
- **>** *G* is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of $H_1, H_2 < G$. **Proof** Otherwise, without loss of generality, H_1 and H_2 are maximal and hence normal, so *G* = *H*₁ ∪ *H*₂, but $|H_1 \cup H_2| < |H_1| + |H_2| ≤ |G|$.
1 Previous work

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988]

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$.

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$. Let $L = \mathbb{Q}(a_1, \ldots, a_k)$.

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$. Let $L = \mathbb{Q}(a_1, \ldots, a_k)$.

 \blacktriangle Yes, iff Gal $(L/\mathbb{Q}) = \bigcup_{g \in G} (\text{Gal}(L/\mathbb{Q}(a_1)) \cup \cdots \cup \text{Gal}(L/\mathbb{Q}(a_k))^g).$

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$. Let $L = \mathbb{Q}(a_1, \ldots, a_k)$.

 \blacktriangle Yes, iff Gal $(L/\mathbb{Q}) = \bigcup_{g \in G} (\text{Gal}(L/\mathbb{Q}(a_1)) \cup \cdots \cup \text{Gal}(L/\mathbb{Q}(a_k))^g).$

Jordan's Theorem ⇒ Impossible if *f* is irreducible.

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup *H* and an automorphism *a* of *G*. [Jehne |1977] & [Saxl | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$. Let $L = \mathbb{Q}(a_1, \ldots, a_k)$.

 \blacktriangle Yes, iff Gal $(L/\mathbb{Q}) = \bigcup_{g \in G} (\text{Gal}(L/\mathbb{Q}(a_1)) \cup \cdots \cup \text{Gal}(L/\mathbb{Q}(a_k))^g).$

Jordan's Theorem ⇒ Impossible if *f* is irreducible.

Conjecture Impossible if $f = f_1 f_2$ with deg(f_1) = deg(f_2).

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Then Aut(Γ) is transitive on vertices or has two equal-sized orbits on vertices.

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Then Aut(Γ) is transitive on vertices or has two equal-sized orbits on vertices.

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Then Aut(Γ) is transitive on vertices or has two equal-sized orbits on vertices.

Conjecture Aut(Γ) has a derangement.

Let Γ be a regular graph such that Aut(Γ) is transitive on edges.

Then Aut(Γ) is transitive on vertices or has two equal-sized orbits on vertices.

Conjecture Aut(Γ) has a derangement.

True when Γ is 3- or 4-regular.

[Giudici, Potočnik & Verret | 2014]

Let Γ be a regular graph such that Aut(Γ) is transitive on edges.

Then Aut(Γ) is transitive on vertices or has two equal-sized orbits on vertices.

Conjecture Aut(Γ) has a derangement.

True when Γ is 3- or 4-regular. [Giudici, Potočnik & Verret | 2014]

[Nakajima | 2022]

4 Extremal combinatorics

Erdős–Ko–Rado theorem for intersecting families of permutations.

Main Theorem [ELLIS & H | 2024]

Let 1 \neq G \leqslant Sym (n) with orbits Ω_1 and Ω_2 . Assume $|\Omega_1|=|\Omega_2|.$ Assume *G* is primitive on Ω_2 . Then *G* has a derangement.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'Nan–Scott Theorem, split by type of $G \leqslant Sym(\Omega_1)$.

Main Theorem [ELLIS & H | 2024]

Let 1 \neq G \leqslant Sym (n) with orbits Ω_{1} and $\Omega_{2}.$ Assume $|\Omega_{1}| \mid |\Omega_{2}|.$  Assume *G* is primitive on Ω2. Then *G* has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'NAN–SCOTT THEOREM, split by type of $G \leqslant Sym(\Omega_1)$.

If $G \leqslant Sym(\Omega_1)$ is almost simple, then use [Bubblon], Spiga & Weigel | 2024].

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'Nan–Scott Theorem, split by type of $G \leqslant Sym(\Omega_1)$.

If $G \leqslant$ Sym (Ω_1) is almost simple, then use [Bubblon], Spiga & Weigel | 2024]. Hardest remaining case: $G \leqslant Sym(\Omega_1)$ is affine.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'NAN–SCOTT THEOREM, split by type of $G \leqslant Sym(\Omega_1)$.

If $G \leqslant Sym(\Omega_1)$ is almost simple, then use [BUBBLONI, SPIGA & WEIGEL | 2024]. Hardest remaining case: $G \leqslant Sym(\Omega_1)$ is affine.

Write $G = \mathbb{F}_p^d$:*H* where $H \leqslant \mathsf{GL}_d(p)$ irreducible.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'Nan–Scott Theorem, split by type of $G \leqslant Sym(\Omega_1)$.

If $G \leqslant$ Sym (Ω_1) is almost simple, then use [Bubblon], Spiga & Weigel | 2024]. Hardest remaining case: $G \leqslant Sym(\Omega_1)$ is affine.

Write $G = \mathbb{F}_p^d$:*H* where $H \leqslant \mathsf{GL}_d(p)$ irreducible.

Theorem \star [ELLIS & H | 2024]

Let $H \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and p^d $\overline{}$ There is *h* ∈ *H* that is a derangement on Ω and fixes a nonzero vector of IF_β.
There is *h* ∈ *H* that is a derangement on Ω and fixes a nonzero vector of IF_β. |Ω|.

Let *H* be finite. Assume *H* acts transitively on Ω.

Let *H* be finite. Assume *H* acts transitively on Ω.

Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Let *H* be finite. Assume *H* acts transitively on Ω.

Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works?

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p \bigm | |\Omega|$.

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Let *H* be finite. Assume *H* acts transitively on Ω.

Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.
Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [ISBELL | 1960]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Theorem \bigstar

Let $H\leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d\mathrel|$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Theorem \bigstar

Let $H\leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d\mathrel|$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Theorem \bigstar

Let $H\leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d\mathrel|$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Theorem \bigstar

Let $H\leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d\mathrel|$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . $|\Omega|$.

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example Let $H = GL_{d/2}(p^2) \leqslant GL_d(p)$.

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Theorem \bigstar

Let $H\leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d\mathrel|$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . $|\Omega|$.

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example Let $H = GL_{d/2}(p^2) \leqslant GL_d(p)$. Let $\Omega = H/M$ where $M = GL_{d/2}(p)$.

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Theorem \bigstar

Let $H\leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d\mathrel|$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . $|\Omega|$.

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example Let $H = GL_{d/2}(p^2) \leqslant GL_d(p)$. Let $\Omega = H/M$ where $M = GL_{d/2}(p)$. Then p^d $\big|$ $|\Omega|$

Let *H* be finite. Assume *H* acts transitively on Ω. Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime p works? We need $p\bigm| |\Omega|.$ Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [Cameron, Frankl & Kantor | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|Ω| = p^ab$ with *a* $≥ b$. Then *H* has a derangement of *p*-power order.

Theorem \bigstar

Let $H\leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d\mathrel|$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . $|\Omega|$.

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example Let $H = GL_{d/2}(p^2) \leqslant GL_d(p)$. Let $\Omega = H/M$ where $M = GL_{d/2}(p)$. Then *p d*   |Ω| but every *p*-element of *H* is conjugate to an element of *M*.

Let $H \leqslant GL_d(p)$ be irreducible. Assume *H* acts primitively on Ω and $p^d \mid |\Omega|$. There is $h\in H$ that is a derangement on Ω and fixes a nonzero vector of $\mathbb{F}_p^d.$

Let $H \leqslant GL_d(p)$ be irreducible. Assume *H* acts primitively on Ω and $p^d \mid |\Omega|$. There is $h\in H$ that is a derangement on Ω and fixes a nonzero vector of $\mathbb{F}_p^d.$

Action of *H* on Ω has a kernel *K*.

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'Nan–Scott Theorem, split by type of $\overline{H} \leqslant$ Sym(Ω).

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of IF |Ω|. *d p* .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'Nan–Scott Theorem, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action,

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of IF |Ω|. *d p* .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *CONFERGIUDICI & WILSON* | 2011]

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *CONFERGIUDICI & WILSON* | 2011]

Let $H \leqslant GL_d(p)$ be irreducible. Assume *H* acts primitively on Ω and p^d | |Ω|. There is $h\in H$ that is a derangement on Ω and fixes a nonzero vector of $\mathbb{F}_p^d.$

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *CONFERGIUDICI & WILSON* | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$.

Let $H \leqslant GL_d(p)$ be irreducible. Assume *H* acts primitively on Ω and p^d | |Ω|. There is $h\in H$ that is a derangement on Ω and fixes a nonzero vector of $\mathbb{F}_p^d.$

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *CONFERGIUDICI & WILSON* | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *CONFERGIUDICI & WILSON* | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *CONFERGIUDICI & WILSON* | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example \overline{H} = PSL_n(p)

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'Nan–Scott Theorem, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *EBURNESS, GIUDICI & WILSON* | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example
$$
\overline{H} = \text{PSL}_n(p)
$$
 $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1) \cdots (p^d - 1)$

Let $\mathsf{H} \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mathrel{\big|}$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *CONFERGIUDICI & WILSON* | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example \overline{H} = $PSL_n(p)$ $\mathsf{Note}~p^d$ divides $|\Omega|=|\mathsf{H}: \mathsf{H}_{\omega}|$

$$
|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1) \cdots (p^d - 1)
$$

Let $H \leqslant GL_d(p)$ be irreducible. Assume *H* acts primitively on Ω and $p^d \mid |\Omega|$. There is $h\in H$ that is a derangement on Ω and fixes a nonzero vector of $\mathbb{F}_p^d.$

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *EBURNESS, GIUDICI & WILSON* | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example \overline{H} = $PSL_n(p)$ $\frac{1}{2}n(n-1)(p^2-1)\cdots(p^d-1)$ Note p^d divides $|\Omega|=|H:H_\omega|$ which divides $|\overline{H}|$,

Let $H \leqslant GL_d(p)$ be irreducible. Assume *H* acts primitively on Ω and $p^d \mid |\Omega|$. There is $h\in H$ that is a derangement on Ω and fixes a nonzero vector of $\mathbb{F}_p^d.$

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. *CONFERGIUDICI & WILSON* | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example \overline{H} = $PSL_n(p)$ $\frac{1}{2}n(n-1)(p^2-1)\cdots(p^d-1)$ Note p^d divides $|\Omega|=|H:H_\omega|$ which properly divides $|\overline{H}|$,

Let $H \leqslant$ GL $_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \bigm| |\Omega|.$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order p. **[BURNESS, GIUDICI & WILSON** | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example $\overline{H} = PSL_n(p)$ $\frac{1}{2}n(n-1)(p^2-1)\cdots(p^d-1)$ Note p^d divides $|\Omega| = |H : H_\omega|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}$ $\frac{1}{2}n(n-1)$.

Let $H \leqslant$ GL $_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \bigm| |\Omega|.$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order p. **[BURNESS, GIUDICI & WILSON** | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example $\overline{H} = PSL_n(p)$ $\frac{1}{2}n(n-1)(p^2-1)\cdots(p^d-1)$ Note p^d divides $|\Omega| = |H : H_\omega|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}$ $\frac{1}{2}n(n-1)$. Then $d = n$ and λ is the lift of the natural rep (or its dual). [LIEBECK | 1985]

Let $H \leqslant GL_d(p)$ be irreducible. Assume *H* acts primitively on Ω and $p^d \mid |\Omega|$. There is $h\in H$ that is a derangement on Ω and fixes a nonzero vector of $\mathbb{F}_p^d.$

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order p. **[BURNESS, GIUDICI & WILSON** | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example $\overline{H} = PSL_n(p)$ $\frac{1}{2}n(n-1)(p^2-1)\cdots(p^d-1)$ Note p^d divides $|\Omega| = |H : H_\omega|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}$ $\frac{1}{2}n(n-1)$. Then $d = n$ and λ is the lift of the natural rep (or its dual). [LIEBECK | 1985] Argue directly,

Let $H \leqslant$ GL $_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \bigm| |\Omega|.$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'NAN–SCOTT THEOREM, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order p. **[BURNESS, GIUDICI & WILSON** | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example $\overline{H} = PSL_n(p)$ $\frac{1}{2}n(n-1)(p^2-1)\cdots(p^d-1)$ Note p^d divides $|\Omega| = |H : H_\omega|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}$ $\frac{1}{2}n(n-1)$. Then $d = n$ and λ is the lift of the natural rep (or its dual). [LIEBECK | 1985] Argue directly, e.g. if $H_{\omega}\approx \mathsf{SL}_{n/2}(p^2)$,

Let $H\leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d\mathrel|$ There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d . |Ω|.

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$. Via O'Nan–Scott Theorem, split by type of $\overline{H} \leqslant$ Sym(Ω).

Assume $\overline{H} \leqslant$ Sym(Ω) is almost simple or product action, as otherwise \overline{H} has a derangement of order *p*. **Example 2011** [Burness, Giudici & Wilson | 2011]

Have projective rep λ : $H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example $\overline{H} = PSL_n(p)$ $\frac{1}{2}n(n-1)(p^2-1)\cdots(p^d-1)$ Note p^d divides $|\Omega| = |H : H_\omega|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}$ $\frac{1}{2}n(n-1)$. Then $d = n$ and λ is the lift of the natural rep (or its dual). [LIEBECK | 1985] Argue directly, e.g. if $H_{\omega}\approx \mathsf{SL}_{n/2}(p^2)$, choose h with odd-dim fixed space.

Let $\lambda: G \to \text{PGL}_d(k)$ be a nontrivial irred projective rep with $k = \overline{k}$.

Let $\lambda: G \to \mathrm{PGL}_d(k)$ be a nontrivial irred projective rep with $k = \overline{k}$. Let $N \leqslant G$ with $\overline{G} = G/N$ finite simple.

Question When is λ a lift of a projective rep of \overline{G} ?

Question When is λ a lift of a projective rep of \overline{G} ?

Example

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$.
Question When is λ a lift of a projective rep of \overline{G} ?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible.

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let n_S be the minimum n such that $S \preccurlyeq \mathsf{Sp}_{2n}(2).$

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let n_S be the minimum n such that $S \preccurlyeq \mathsf{Sp}_{2n}(2).$

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{\mathsf{n}_{\overline{G}}}$ if char $\mathsf{k} \neq 2$, and d is min possible. Then λ lifts from $\overline{G}.$

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let n_S be the minimum n such that $S \preccurlyeq \mathsf{Sp}_{2n}(2).$

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{\mathsf{n}_{\overline{G}}}$ if char $\mathsf{k} \neq 2$, and d is min possible. Then λ lifts from $\overline{G}.$

Theorem [H & Liebeck | 2024]

Assume $d < 2^{\textit{n}}$ T $\bar{\textit{G}}$ if char $k \neq 2$, and $d < P(\overline{\textit{G}}).$ Then λ lifts from $\overline{\textit{G}}.$

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let $\bm{n}_{\bm{S}}$ (resp. $\bm{P(S)}$) be the minimum n such that $S \preccurlyeq \mathrm{Sp}_{2n}(2)$ (resp. $S \preccurlyeq S_n$).

Theorem [FEIT & TITS | 1978]

Assume $d <$ 2 $^{\eta_{\overline{G}}}$ if char $k \neq$ 2, and d is min possible. Then λ lifts from $\overline{G}.$

Theorem [H & Liebeck | 2024]

Assume $d < 2^{\textit{n}}$ T $\bar{\textit{G}}$ if char $k \neq 2$, and $d < P(\overline{\textit{G}}).$ Then λ lifts from $\overline{\textit{G}}.$

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let $\bm{n}_{\bm{S}}$ (resp. $\bm{P(S)}$) be the minimum n such that $S \preccurlyeq \mathrm{Sp}_{2n}(2)$ (resp. $S \preccurlyeq S_n$).

Theorem [FEIT & TITS | 1978]

Assume $d <$ 2 $^{\eta_{\overline{G}}}$ if char $k \neq$ 2, and d is min possible. Then λ lifts from $\overline{G}.$

Theorem [H & Liebeck | 2024]

Assume $d < 2^{\textit{n}}$ T $\bar{\textit{G}}$ if char $k \neq 2$, and $d < P(\overline{\textit{G}}).$ Then λ lifts from $\overline{\textit{G}}.$

Example

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let $\bm{n}_{\bm{S}}$ (resp. $\bm{P(S)}$) be the minimum n such that $S \preccurlyeq \mathrm{Sp}_{2n}(2)$ (resp. $S \preccurlyeq S_n$).

Theorem [FEIT & TITS | 1978]

Assume $d <$ 2 $^{\eta_{\overline{G}}}$ if char $k \neq$ 2, and d is min possible. Then λ lifts from $\overline{G}.$

Theorem [H & Liebeck | 2024]

Assume $d < 2^{\textit{n}}$ T $\bar{\textit{G}}$ if char $k \neq 2$, and $d < P(\overline{\textit{G}}).$ Then λ lifts from $\overline{\textit{G}}.$

Example Let $\overline{G} = \text{PSL}_n(p^f)$.

Question When is λ a lift of a projective rep of \overline{G} ?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let $\bm{n}_{\bm{S}}$ (resp. $\bm{P(S)}$) be the minimum n such that $S \preccurlyeq \mathrm{Sp}_{2n}(2)$ (resp. $S \preccurlyeq S_n$).

Theorem [FEIT & TITS | 1978]

Assume $d <$ 2 $^{\eta_{\overline{G}}}$ if char $k \neq$ 2, and d is min possible. Then λ lifts from $\overline{G}.$

Theorem [H & Liebeck | 2024]

Assume $d < 2^{\textit{n}}$ T $\bar{\textit{G}}$ if char $k \neq 2$, and $d < P(\overline{\textit{G}}).$ Then λ lifts from $\overline{\textit{G}}.$

Example Let $\overline{G} = \text{PSL}_n(p^f)$. Assume char $k = p$ and $d < \frac{1}{2}$ $\frac{1}{2}n(n-1).$

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let $\bm{n}_{\bm{S}}$ (resp. $\bm{P(S)}$) be the minimum n such that $S \preccurlyeq \mathrm{Sp}_{2n}(2)$ (resp. $S \preccurlyeq S_n$).

Theorem [FEIT & TITS | 1978]

Assume $d <$ 2 $^{\eta_{\overline{G}}}$ if char $k \neq$ 2, and d is min possible. Then λ lifts from $\overline{G}.$

Theorem [H & Liebeck | 2024]

Assume $d < 2^{\textit{n}}$ T $\bar{\textit{G}}$ if char $k \neq 2$, and $d < P(\overline{\textit{G}}).$ Then λ lifts from $\overline{\textit{G}}.$

Example Let $\overline{G} = \text{PSL}_n(p^f)$. Assume char $k = p$ and $d < \frac{1}{2}$ $\frac{1}{2}n(n-1).$ Then $d < P(\overline{G})$ and $d < 2^{n_{\overline{G}}},$

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let $\bm{n}_{\bm{S}}$ (resp. $\bm{P(S)}$) be the minimum n such that $S \preccurlyeq \mathrm{Sp}_{2n}(2)$ (resp. $S \preccurlyeq S_n$).

Theorem [FEIT & TITS | 1978]

Assume $d <$ 2 $^{\eta_{\overline{G}}}$ if char $k \neq$ 2, and d is min possible. Then λ lifts from $\overline{G}.$

Theorem [H & Liebeck | 2024]

Assume $d < 2^{\textit{n}}$ T $\bar{\textit{G}}$ if char $k \neq 2$, and $d < P(\overline{\textit{G}}).$ Then λ lifts from $\overline{\textit{G}}.$

Example Let $\overline{G} = \text{PSL}_n(p^f)$. Assume char $k = p$ and $d < \frac{1}{2}$ $\frac{1}{2}n(n-1).$ Then $d < P(\overline{G})$ and $d < 2^{n_{\overline{G}}}$, so λ is a lift of an irred proj rep of \overline{G} of dim $d.$

Question When is λ a lift of a projective rep of G?

 $\textbf{Example}$ Assume char $k \neq 2$. Then 2^{2n} . Sp $_{2n}(2) \preccurlyeq \textsf{PGL}_{2^n}(k)$ irreducible. However, Sp2*ⁿ* (2) 4 PGL*d*(*k*) implies *d* > 2 *n* . [Landazuri & Seitz | 1974]

Let $\bm{n}_{\bm{S}}$ (resp. $\bm{P(S)}$) be the minimum n such that $S \preccurlyeq \mathrm{Sp}_{2n}(2)$ (resp. $S \preccurlyeq S_n$).

Theorem [FEIT & TITS | 1978]

Assume $d <$ 2 $^{\eta_{\overline{G}}}$ if char $k \neq$ 2, and d is min possible. Then λ lifts from $\overline{G}.$

Theorem [H & Liebeck | 2024]

Assume $d < 2^{\textit{n}}$ T $\bar{\textit{G}}$ if char $k \neq 2$, and $d < P(\overline{\textit{G}}).$ Then λ lifts from $\overline{\textit{G}}.$

Example Let $\overline{G} = \text{PSL}_n(p^f)$. Assume char $k = p$ and $d < \frac{1}{2}$ $\frac{1}{2}n(n-1).$ Then $d < P(\overline{G})$ and $d < 2^{n_{\overline{G}}}$, so λ is a lift of an irred proj rep of \overline{G} of dim $d.$ Hence, λ is a lift of the natural rep or its dual.

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [Ellis & H | 2024]

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

Motivated by a theorem of $[$ Jordan | 1870] we conjecture:

Conjecture [Ellis & H | 2024]

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

We prove this when at least one orbit is primitive.

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [Ellis & H | 2024]

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [Ellis & H | 2024]

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

At the heart of the proof is a linear variant on [ISBELL'S CONJECTURE | 1960]:

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

At the heart of the proof is a linear variant on [ISBELL'S CONJECTURE | 1960]:

Theorem [Ellis & H | 2024]

Let $H \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and p^d $\overline{}$ There is *h* ∈ *H* that is a derangement on Ω and fixes a nonzero vector of IF_β.
There is *h* ∈ *H* that is a derangement on Ω and fixes a nonzero vector of IF_β. |Ω|.

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [Ellis & H | 2024]

Let 1 \neq *G* \leqslant Sym (n) have two orbits of size $\frac{n}{2}.$ Then *G* has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leqslant \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume *G* is primitive on $Ω₂$. Then *G* has a derangement.

At the heart of the proof is a linear variant on [ISBELL'S CONJECTURE | 1960]:

Theorem [Ellis & H | 2024]

Let $H \leqslant \mathsf{GL}_d(p)$ be irreducible. Assume H acts primitively on Ω and p^d $\overline{}$ There is *h* ∈ *H* that is a derangement on Ω and fixes a nonzero vector of IF_β.
There is *h* ∈ *H* that is a derangement on Ω and fixes a nonzero vector of IF_β. |Ω|.

Key to this are results of $[H 8, LIEBECK 12024]$ extending [FEIT & TITS | 1978].