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In fact, if G is nilpotent, then G is not the union of conjugates of Hy, H, < G.

Proof Otherwise, without loss of generality, H; and H, are maximal and
hence normal, so G = Hqy U Hy, but |Hy U Hy| < |Hq| + |Ha| < |G].
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2 Algebraic number theory
Let f € Z[X] have no roots in Z.
Q Does f have a root modulo almost all primes?
Letf = fi - - - fx for irred f; with root a; € Q. Let L = Q(ay, . . ., ag)-
A Yes, iff Gal(L/Q) = Uyeq(Gal(L/Q(ar)) U - - - U Gal(L/Q(ak))?.
Jordan’s Theorem = Impossible if f is irreducible.
Conjecture Impossible if f = fif; with deg(fy) = deg(f>).
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4 Extremal combinatorics

Erd6s—-Ko-Rado theorem for intersecting families of permutations.
[NakaJIMA | 2022]
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Main Theorem [ELLIS & H | 2024]

Let 1 G < Sym(n) with orbits ©; and Q. Assume Q4] | [Q2].
Assume G is primitive on €2,. Then G has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Q..

Via O'NAN-ScoTT THEOREM, split by type of G < Sym().
If G < Sym(2,) is almost simple, then use [BuBBLONI, SPIGA & WEIGEL | 2024].
Hardest remaining case: G < Sym($2,) is affine.

Write G = IFJ:H where H < GLy4(p) irreducible.

Theorem % [ELLIS & H | 2024]

Let H < GLy(p) be irreducible. Assume H acts primitively on Q and p? | |Q].
There is h € H that is a derangement on  and fixes a nonzero vector of IFg.
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Motivated by a theorem of [JorpAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]
Let 1 # G < Sym(n) have two orbits of size 5. Then G has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let 1 # G < Sym(n) with orbits Q; and Q,. Assume || | ||
Assume G is primitive on €2,. Then G has a derangement.
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Let H < GLg(p) be irreducible. Assume H acts primitively on Q and p? | |Q].
There is h € H that is a derangement on  and fixes a nonzero vector of IFg.
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Motivated by a theorem of [JorpAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]

Let 1 # G < Sym(n) have two orbits of size 5. Then G has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let 1 # G < Sym(n) with orbits Q; and Q,. Assume || | ||
Assume G is primitive on €2,. Then G has a derangement.

At the heart of the proof is a linear variant on [ISBELL'S CONJECTURE | 1960]:

Theorem [ELLIS & H | 2024]

Let H < GLg(p) be irreducible. Assume H acts primitively on Q and p? | |Q].
There is h € H that is a derangement on  and fixes a nonzero vector of IFg.

Key to this are results of [H & LiEBEck | 2024] extending [FEIT & TiTs | 1978].



