Is a finite group ever the union of conjugates of two equal-sized proper subgroups?

Scott Harper

University of St Andrews

Topics in Group Theory University of Padova 10 September 2024

Joint work with David Ellis (University of Bristol)

Mathematics > Group Theory

[Submitted on 28 Aug 2024]

Orbits of permutation groups with no derangements

David Ellis, Scott Harper

Theorem [Jordan | 1872]

Let $1 \neq G \leq Sym(\Omega)$ be finite and transitive. Then G has a derangement.

Theorem [JORDAN | 1872]

Let 1 \neq G \leq Sym (Ω) be finite and transitive. Then G has a derangement.

Proof

Theorem [Jordan | 1872]

Let 1 \neq G \leq Sym (Ω) be finite and transitive. Then G has a derangement.

Proof By transitivity, $\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g) = 1$;

Theorem [Jordan | 1872]

Let 1 \neq G \leq Sym (Ω) be finite and transitive. Then G has a derangement.

Proof By transitivity, $\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g) = 1$; $\operatorname{fix}(\operatorname{id}) > 1$, so $\operatorname{fix}(g) = 0$ for some g.

Theorem [Jordan | 1872]

Let 1 \neq G \leqslant Sym (Ω) be finite and transitive. Then G has a derangement.

Proof By transitivity, $\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g) = 1$; $\operatorname{fix}(\operatorname{id}) > 1$, so $\operatorname{fix}(g) = 0$ for some g.

Remarks

Theorem [Jordan | 1872]

Let 1 \neq G \leqslant Sym (Ω) be finite and transitive. Then G has a derangement.

Proof By transitivity, $\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g) = 1$; $\operatorname{fix}(\operatorname{id}) > 1$, so $\operatorname{fix}(g) = 0$ for some g.

Remarks

> Finite is necessary: fails for $FSym(\mathbb{N}) \leq Sym(\mathbb{N})$.

Theorem [Jordan | 1872]

Let 1 \neq G \leqslant Sym (Ω) be finite and transitive. Then G has a derangement.

Proof By transitivity, $\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g) = 1$; $\operatorname{fix}(\operatorname{id}) > 1$, so $\operatorname{fix}(g) = 0$ for some g.

Remarks

- > Finite is necessary: fails for $FSym(IN) \leq Sym(IN)$.
- > Transitive is necessary: fails for $Sym(n 1) \leq Sym(n)$.

Theorem [Jordan | 1872]

Let 1 \neq G \leqslant Sym (Ω) be finite and transitive. Then G has a derangement.

Proof By transitivity, $\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g) = 1$; $\operatorname{fix}(\operatorname{id}) > 1$, so $\operatorname{fix}(g) = 0$ for some g.

Remarks

- > Finite is necessary: fails for $FSym(IN) \leq Sym(IN)$.
- > Transitive is necessary: fails for $Sym(n-1) \leq Sym(n)$.

Conjecture [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [Jordan | 1872]

Let 1 \neq G \leqslant Sym (Ω) be finite and transitive. Then G has a derangement.

Proof By transitivity, $\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g) = 1$; $\operatorname{fix}(\operatorname{id}) > 1$, so $\operatorname{fix}(g) = 0$ for some g.

Remarks

- > Finite is necessary: fails for $FSym(IN) \leq Sym(IN)$.
- > Transitive is necessary: fails for $Sym(n 1) \leq Sym(n)$.

Conjecture [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

No finite group is the union of conjugates of a proper subgroup.

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{q \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{q \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{q \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1
$$G = GL_n(\mathbb{C})$$

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{q \in G} (H_1 \cup \cdots \cup H_k)^q \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{q \in G} B^q$ for Borel subgroup B of upper triang. matrices.

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{q \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g.$$
 [Dye | 1979]

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g.$$
 [Dye | 1979]

 $3 \quad G = AGL_1(p) = V:H$

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{g \in G} (H_1 \cup \cdots \cup H_k)^g \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g.$$
 [Dye | 1979]

3 $G = AGL_1(p) = V: H = V \cup \bigcup_{q \in G} H^q$ since it is a Frobenius group.

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{q \in G} (H_1 \cup \cdots \cup H_k)^q \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g.$$
 [Dye | 1979]

3 $G = AGL_1(p) = V: H = V \cup \bigcup_{g \in G} H^g$ since it is a Frobenius group.

Conjecture [ELLIS & H | 2024]

No finite gp is the union of conjugates of two equal-sized proper subgroups.

No finite group is the union of conjugates of a proper subgroup.

Link $G = \bigcup_{q \in G} (H_1 \cup \cdots \cup H_k)^q \Leftrightarrow$ no derangements on $G/H_1 \sqcup \cdots \sqcup G/H_k$

Examples

1 $G = GL_n(\mathbb{C}) = \bigcup_{g \in G} B^g$ for Borel subgroup B of upper triang. matrices.

2
$$G = Sp_n(2) = \bigcup_{g \in G} O_n^+(2)^g \cup \bigcup_{g \in G} O_n^-(2)^g.$$
 [Dye | 1979]

3 $G = AGL_1(p) = V: H = V \cup \bigcup_{q \in G} H^q$ since it is a Frobenius group.

Conjecture [ELLIS & H | 2024]

No finite gp is the union of conjugates of two equal-sized proper subgroups.

Theorem [ELLIS & H | 2024]

Conjecture holds if at least one of the subgroups is maximal.

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

The conjecture also holds if

> $\frac{n}{2}$ is a prime power

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

- > $\frac{n}{2}$ is a prime power
- > $|G| \leqslant$ 1000: computation in MAGMA
- > G is simple

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA
- > G is simple: using [BUBBOLONI, SPIGA & WEIGEL | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA
- > G is simple: using [BUBBOLONI, SPIGA & WEIGEL | 2024]
- > G is nilpotent

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

The conjecture also holds if

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA
- > G is simple: using [BUBBOLONI, SPIGA & WEIGEL | 2024]
- > G is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of H_1 , $H_2 < G$.

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

The conjecture also holds if

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA
- > G is simple: using [BUBBOLONI, SPIGA & WEIGEL | 2024]
- > G is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of H_1 , $H_2 < G$. **Proof**

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

The conjecture also holds if

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA
- > G is simple: using [BUBBOLONI, SPIGA & WEIGEL | 2024]
- > G is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of H_1 , $H_2 < G$. **Proof** Otherwise, without loss of generality, H_1 and H_2 are maximal

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

The conjecture also holds if

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA
- > G is simple: using [BUBBOLONI, SPIGA & WEIGEL | 2024]
- > G is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of H_1 , $H_2 < G$. **Proof** Otherwise, without loss of generality, H_1 and H_2 are maximal and hence normal,

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

The conjecture also holds if

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA
- > G is simple: using [BUBBOLONI, SPIGA & WEIGEL | 2024]
- > G is nilpotent

In fact, if G is nilpotent, then G is not the union of conjugates of H_1 , $H_2 < G$. **Proof** Otherwise, without loss of generality, H_1 and H_2 are maximal and hence normal, so $G = H_1 \cup H_2$,

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Theorem [ELLIS & H | 2024]

Conjecture holds if G is primitive on at least one of the orbits.

The conjecture also holds if

- > $\frac{n}{2}$ is a prime power
- > $|G| \leq 1000$: computation in MAGMA
- > G is simple: using [BUBBOLONI, SPIGA & WEIGEL | 2024]
- > G is nilpotent

In fact, if *G* is nilpotent, then *G* is not the union of conjugates of H_1 , $H_2 < G$. **Proof** Otherwise, without loss of generality, H_1 and H_2 are maximal and hence normal, so $G = H_1 \cup H_2$, but $|H_1 \cup H_2| < |H_1| + |H_2| \leq |G|$.

1 Previous work

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988]

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

1 Previous work

No finite group *G* is the union of conjugates of *H* and *H^a* for a proper subgroup *H* and an automorphism *a* of *G*. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$.

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$. Let $L = \mathbb{Q}(a_1, \ldots, a_k)$.

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$. Let $L = \mathbb{Q}(a_1, \ldots, a_k)$.

A Yes, iff $\operatorname{Gal}(L/\mathbb{Q}) = \bigcup_{g \in G} (\operatorname{Gal}(L/\mathbb{Q}(a_1)) \cup \cdots \cup \operatorname{Gal}(L/\mathbb{Q}(a_k))^g$.

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$. Let $L = \mathbb{Q}(a_1, \ldots, a_k)$.

A Yes, iff $\operatorname{Gal}(L/\mathbb{Q}) = \bigcup_{q \in G} (\operatorname{Gal}(L/\mathbb{Q}(a_1)) \cup \cdots \cup \operatorname{Gal}(L/\mathbb{Q}(a_k))^g$.

Jordan's Theorem \Rightarrow Impossible if f is irreducible.

1 Previous work

No finite group G is the union of conjugates of H and H^a for a proper subgroup H and an automorphism a of G. [JEHNE |1977] & [SAXL | 1988] (The final part of the proof of a result on Kronecker equivalence.)

2 Algebraic number theory

Let $f \in \mathbb{Z}[X]$ have no roots in \mathbb{Z} .

Q Does *f* have a root modulo almost all primes?

Let $f = f_1 \cdots f_k$ for irred f_i with root $a_i \in \overline{\mathbb{Q}}$. Let $L = \mathbb{Q}(a_1, \ldots, a_k)$.

A Yes, iff $\operatorname{Gal}(L/\mathbb{Q}) = \bigcup_{q \in G} (\operatorname{Gal}(L/\mathbb{Q}(a_1)) \cup \cdots \cup \operatorname{Gal}(L/\mathbb{Q}(a_k))^g$.

Jordan's Theorem \Rightarrow Impossible if f is irreducible.

Conjecture Impossible if $f = f_1 f_2$ with $deg(f_1) = deg(f_2)$.

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Then $Aut(\Gamma)$ is transitive on vertices or has two equal-sized orbits on vertices.

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Then $Aut(\Gamma)$ is transitive on vertices or has two equal-sized orbits on vertices.

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Then $Aut(\Gamma)$ is transitive on vertices or has two equal-sized orbits on vertices.

Conjecture Aut(Γ) has a derangement.

Let Γ be a regular graph such that $Aut(\Gamma)$ is transitive on edges.

Then $Aut(\Gamma)$ is transitive on vertices or has two equal-sized orbits on vertices.

Conjecture Aut(Γ) has a derangement.

True when Γ is 3- or 4-regular.

[GIUDICI, POTOČNIK & VERRET | 2014]

Let Γ be a regular graph such that Aut(Γ) is transitive on edges.

Then $Aut(\Gamma)$ is transitive on vertices or has two equal-sized orbits on vertices.

Conjecture Aut(Γ) has a derangement.

True when Γ is 3- or 4-regular. [GIUDICI, ΡΟΤΟČΝΙΚ & VERRET | 2014]

[NAKAJIMA | 2022]

4 Extremal combinatorics

Erdős–Ko–Rado theorem for intersecting families of permutations.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| = |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'NAN-SCOTT THEOREM, split by type of $G \leq \text{Sym}(\Omega_1)$.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'NAN-SCOTT THEOREM, split by type of $G \leq \text{Sym}(\Omega_1)$.

If $G \leq \text{Sym}(\Omega_1)$ is almost simple, then use [BUBBLONI, SPIGA & WEIGEL | 2024].

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'NAN-SCOTT THEOREM, split by type of $G \leq \text{Sym}(\Omega_1)$.

If $G \leq \text{Sym}(\Omega_1)$ is almost simple, then use [BUBBLONI, SPIGA & WEIGEL | 2024]. Hardest remaining case: $G \leq \text{Sym}(\Omega_1)$ is affine.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'NAN-SCOTT THEOREM, split by type of $G \leq \text{Sym}(\Omega_1)$.

If $G \leq \text{Sym}(\Omega_1)$ is almost simple, then use [BUBBLONI, SPIGA & WEIGEL | 2024]. Hardest remaining case: $G \leq \text{Sym}(\Omega_1)$ is affine.

Write $G = \mathbb{F}_p^d$: *H* where $H \leq GL_d(p)$ irreducible.

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Reduction Lemma We can assume G is faithful and primitive on Ω_1 .

Via O'NAN-SCOTT THEOREM, split by type of $G \leq \text{Sym}(\Omega_1)$.

If $G \leq \text{Sym}(\Omega_1)$ is almost simple, then use [BUBBLONI, SPIGA & WEIGEL | 2024]. Hardest remaining case: $G \leq \text{Sym}(\Omega_1)$ is affine.

Write $G = \mathbb{F}_p^d$: *H* where $H \leq GL_d(p)$ irreducible.

Theorem ★ [ELLIS & H | 2024]

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Let *H* be finite. Assume *H* acts transitively on Ω .

Let *H* be finite. Assume *H* acts transitively on Ω .

Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Let *H* be finite. Assume *H* acts transitively on Ω .

Then there is some prime p such that H has a derangement of p-power order.

Which prime *p* works?

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$.

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture [ISBELL | 1960]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

ISbell'S Conjecture [ISBELL | 1960] & [CAMERON, FRANKL & KANTOR | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [CAMERON, FRANKL & KANTOR | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Theorem ★

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [CAMERON, FRANKL & KANTOR | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Theorem ★

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [CAMERON, FRANKL & KANTOR | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Theorem ★

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [CAMERON, FRANKL & KANTOR | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Theorem ★

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example Let $H = \operatorname{GL}_{d/2}(p^2) \leq \operatorname{GL}_d(p)$.

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [CAMERON, FRANKL & KANTOR | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Theorem ★

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example Let $H = \operatorname{GL}_{d/2}(p^2) \leq \operatorname{GL}_d(p)$. Let $\Omega = H/M$ where $M = \operatorname{GL}_{d/2}(p)$.

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [CAMERON, FRANKL & KANTOR | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Theorem ★

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example Let $H = GL_{d/2}(p^2) \leq GL_d(p)$. Let $\Omega = H/M$ where $M = GL_{d/2}(p)$. Then $p^d \mid |\Omega|$

Let *H* be finite. Assume *H* acts transitively on Ω . Then there is some prime *p* such that *H* has a derangement of *p*-power order.

Which prime *p* works? We need $p \mid |\Omega|$. Not sufficient.

Isbell's Conjecture [Isbell | 1960] & [CAMERON, FRANKL & KANTOR | 1989]

Let *H* be finite. Assume *H* acts transitively on Ω and $|\Omega| = p^a b$ with $a \gg b$. Then *H* has a derangement of *p*-power order.

Theorem ★

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

If *h* has *p*-power order, then *h* is unipotent, so it fixes a nonzero vector.

Example Let $H = GL_{d/2}(p^2) \leq GL_d(p)$. Let $\Omega = H/M$ where $M = GL_{d/2}(p)$. Then $p^d \mid |\Omega|$ but every *p*-element of *H* is conjugate to an element of *M*.

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{IF}_p^d .

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of H on Ω has a kernel K.

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of H on Ω has a kernel K. Then H is some extension of $\overline{H} = H/K$. Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \operatorname{Sym}(\Omega)$ is almost simple or product action,

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$.

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \to PGL_d(p)$. Assume absolutely irreducible.

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to PGL_d(p)$.

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to PGL_d(p)$.

Example $\overline{H} = PSL_n(p)$

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example $\overline{H} = \text{PSL}_n(p)$ $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1)\cdots(p^d - 1)$

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \to PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to PGL_d(p)$.

Example $\overline{H} = PSL_n(p)$ Note p^d divides $|\Omega| = |H : H_{\omega}|$

$$|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1)\cdots(p^d - 1)$$

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example $\overline{H} = PSL_n(p)$ $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1)\cdots(p^d - 1)$ Note p^d divides $|\Omega| = |H: H_{\omega}|$ which divides $|\overline{H}|$,

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of *H* on Ω has a kernel *K*. Then *H* is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to \text{PGL}_d(p)$.

Example $\overline{H} = \text{PSL}_n(p)$ $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1) \cdots (p^d - 1)$ Note p^d divides $|\Omega| = |H : H_{\omega}|$ which properly divides $|\overline{H}|$,

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of H on Ω has a kernel K. Then H is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \to PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to PGL_d(p)$.

Example $\overline{H} = \text{PSL}_n(p)$ $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1) \cdots (p^d - 1)$ Note p^d divides $|\Omega| = |H : H_{\omega}|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}n(n-1)$.

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of H on Ω has a kernel K. Then H is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to PGL_d(p)$.

Example $\overline{H} = PSL_n(p)$ $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1) \cdots (p^d - 1)$ Note p^d divides $|\Omega| = |H : H_{\omega}|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}n(n-1)$. Then d = n and λ is the lift of the natural rep (or its dual). [LIEBECK | 1985]

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of H on Ω has a kernel K. Then H is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to PGL_d(p)$.

Example $\overline{H} = PSL_n(p)$ $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1) \cdots (p^d - 1)$ Note p^d divides $|\Omega| = |H : H_{\omega}|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}n(n-1)$. Then d = n and λ is the lift of the natural rep (or its dual). [LIEBECK | 1985] Argue directly,

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of H on Ω has a kernel K. Then H is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to PGL_d(p)$.

Example $\overline{H} = PSL_n(p)$ $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1)\cdots(p^d - 1)$ Note p^d divides $|\Omega| = |H : H_{\omega}|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}n(n-1)$. Then d = n and λ is the lift of the natural rep (or its dual). [LIEBECK | 1985] Argue directly, e.g. if $H_{\omega} \approx SL_{n/2}(p^2)$,

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Action of H on Ω has a kernel K. Then H is some extension of $\overline{H} = H/K$.

Via O'NAN-SCOTT THEOREM, split by type of $\overline{H} \leq \text{Sym}(\Omega)$.

Assume $\overline{H} \leq \text{Sym}(\Omega)$ is almost simple or product action, as otherwise \overline{H} has a derangement of order p. [BURNESS, GIUDICI & WILSON | 2011]

Have projective rep $\lambda : H/Z(H) \rightarrow PGL_d(p)$. Assume absolutely irreducible.

Simplifying assumption λ is the lift of a projective rep $\overline{H} \to PGL_d(p)$.

Example $\overline{H} = PSL_n(p)$ $|\overline{H}| = p^{\frac{1}{2}n(n-1)}(p^2 - 1)\cdots(p^d - 1)$ Note p^d divides $|\Omega| = |H : H_{\omega}|$ which properly divides $|\overline{H}|$, so $d < \frac{1}{2}n(n-1)$. Then d = n and λ is the lift of the natural rep (or its dual). [LIEBECK | 1985] Argue directly, e.g. if $H_{\omega} \approx SL_{n/2}(p^2)$, choose h with odd-dim fixed space.

Let $\lambda : G \to \mathsf{PGL}_d(k)$ be a nontrivial irred projective rep with $k = \overline{k}$.

Let $\lambda : G \to PGL_d(k)$ be a nontrivial irred projective rep with $k = \overline{k}$. Let $N \leq G$ with $\overline{G} = G/N$ finite simple.

Question When is λ a lift of a projective rep of \overline{G} ?

Question When is λ a lift of a projective rep of \overline{G} ?

Example

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$.

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $Sp_{2n}(2) \preccurlyeq PGL_{2^n}(k)$ irreducible.

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $Sp_{2n}(2) \preccurlyeq PGL_{2^n}(k)$ irreducible. However, $Sp_{2n}(2) \preccurlyeq PGL_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $Sp_{2n}(2) \preccurlyeq PGL_{2^n}(k)$ irreducible. However, $Sp_{2n}(2) \preccurlyeq PGL_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} be the minimum *n* such that $S \preccurlyeq Sp_{2n}(2)$.

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $Sp_{2n}(2) \preccurlyeq PGL_{2^n}(k)$ irreducible. However, $Sp_{2n}(2) \preccurlyeq PGL_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} be the minimum *n* such that $S \preccurlyeq Sp_{2n}(2)$.

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_{2^n}(k)$ irreducible. However, $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} be the minimum *n* such that $S \preccurlyeq Sp_{2n}(2)$.

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Theorem [H & LIEBECK | 2024]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and $d < P(\overline{G})$. Then λ lifts from \overline{G} .

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_{2^n}(k)$ irreducible. However, $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} (resp. P(S)) be the minimum n such that $S \preccurlyeq Sp_{2n}(2)$ (resp. $S \preccurlyeq S_{n}$).

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Theorem [Н & LIEBECK | 2024]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and $d < P(\overline{G})$. Then λ lifts from \overline{G} .

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_{2^n}(k)$ irreducible. However, $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} (resp. P(S)) be the minimum n such that $S \preccurlyeq Sp_{2n}(2)$ (resp. $S \preccurlyeq S_{n}$).

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Theorem [H & LIEBECK | 2024]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and $d < P(\overline{G})$. Then λ lifts from \overline{G} .

Example

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_{2^n}(k)$ irreducible. However, $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} (resp. P(S)) be the minimum n such that $S \preccurlyeq Sp_{2n}(2)$ (resp. $S \preccurlyeq S_{n}$).

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Theorem [Н & LIEBECK | 2024]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and $d < P(\overline{G})$. Then λ lifts from \overline{G} .

Example Let $\overline{G} = PSL_n(p^f)$.

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_{2^n}(k)$ irreducible. However, $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} (resp. P(S)) be the minimum n such that $S \preccurlyeq Sp_{2n}(2)$ (resp. $S \preccurlyeq S_{n}$).

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Theorem [Н & LIEBECK | 2024]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and $d < P(\overline{G})$. Then λ lifts from \overline{G} .

Example Let $\overline{G} = PSL_n(p^f)$. Assume char k = p and $d < \frac{1}{2}n(n-1)$.

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_{2^n}(k)$ irreducible. However, $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} (resp. P(S)) be the minimum n such that $S \preccurlyeq Sp_{2n}(2)$ (resp. $S \preccurlyeq S_{n}$).

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Theorem [Н & LIEBECK | 2024]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and $d < P(\overline{G})$. Then λ lifts from \overline{G} .

Example Let $\overline{G} = PSL_n(p^f)$. Assume char k = p and $d < \frac{1}{2}n(n-1)$. Then $d < P(\overline{G})$ and $d < 2^{n_{\overline{G}}}$,

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_{2^n}(k)$ irreducible. However, $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} (resp. P(S)) be the minimum n such that $S \preccurlyeq Sp_{2n}(2)$ (resp. $S \preccurlyeq S_{n}$).

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Theorem [Н & LIEBECK | 2024]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and $d < P(\overline{G})$. Then λ lifts from \overline{G} .

Example Let $\overline{G} = PSL_n(p^f)$. Assume char k = p and $d < \frac{1}{2}n(n-1)$. Then $d < P(\overline{G})$ and $d < 2^{n_{\overline{G}}}$, so λ is a lift of an irred proj rep of \overline{G} of dim d.

Question When is λ a lift of a projective rep of \overline{G} ?

Example Assume char $k \neq 2$. Then 2^{2n} . $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_{2^n}(k)$ irreducible. However, $\operatorname{Sp}_{2n}(2) \preccurlyeq \operatorname{PGL}_d(k)$ implies $d > 2^n$. [LANDAZURI & SEITZ | 1974]

Let n_{S} (resp. P(S)) be the minimum n such that $S \preccurlyeq Sp_{2n}(2)$ (resp. $S \preccurlyeq S_{n}$).

Theorem [FEIT & TITS | 1978]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and d is min possible. Then λ lifts from \overline{G} .

Theorem [Н & LIEBECK | 2024]

Assume $d < 2^{n_{\overline{G}}}$ if char $k \neq 2$, and $d < P(\overline{G})$. Then λ lifts from \overline{G} .

Example Let $\overline{G} = PSL_n(p^f)$. Assume char k = p and $d < \frac{1}{2}n(n-1)$. Then $d < P(\overline{G})$ and $d < 2^{n_{\overline{G}}}$, so λ is a lift of an irred proj rep of \overline{G} of dim d. Hence, λ is a lift of the natural rep or its dual.

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

We prove this when at least one orbit is primitive.

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

At the heart of the proof is a linear variant on [ISBELL'S CONJECTURE | 1960]:

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

At the heart of the proof is a linear variant on [ISBELL'S CONJECTURE | 1960]:

Theorem [ELLIS & H | 2024]

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Motivated by a theorem of [JORDAN | 1870] we conjecture:

Conjecture [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ have two orbits of size $\frac{n}{2}$. Then G has a derangement.

We prove this when at least one orbit is primitive. In fact, we prove:

Main Theorem [ELLIS & H | 2024]

Let $1 \neq G \leq \text{Sym}(n)$ with orbits Ω_1 and Ω_2 . Assume $|\Omega_1| \mid |\Omega_2|$. Assume G is primitive on Ω_2 . Then G has a derangement.

At the heart of the proof is a linear variant on [ISBELL'S CONJECTURE | 1960]:

Theorem [ELLIS & H | 2024]

Let $H \leq GL_d(p)$ be irreducible. Assume H acts primitively on Ω and $p^d \mid |\Omega|$. There is $h \in H$ that is a derangement on Ω and fixes a nonzero vector of \mathbb{F}_p^d .

Key to this are results of [H & LIEBECK | 2024] extending [FEIT & TITS | 1978].