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Description

In this half of the course we focus on two particular combinatorial struc-
tures: orthogonal Latin squares and finite projective planes. These objects are
motivated by both practical applications and pure mathematical questions.
Beginning with Euler’s famous 36 Officers Problem, the main thrust of this
part of the course is to ask when these structures exist. We will see surprising
connections with topics in algebra, combinatorics, geometry, number theory
and statistics. This course naturally continues the ideas introduced in the
second-year course Combinatorics.



1 The Thirty-Six Officers Problem
In 1782, Leonhard Euler wrote a paper that began as follows

“A very curious problem, which has exercised for some time the ingenuity of many people,
has inspired me to undertake the following research, which seems to open a new field of
analysis, in particular the study of combinations. The question revolves around arranging
thirty-six officers to be drawn from six different ranks and also from six different regiments
in a square such that in each row and each column there are six officers each of a different
rank and different regiment. But after spending much effort to resolve this problem, we
must acknowledge that such an arrangement is absolutely impossible, though we cannot
give a rigorous proof.”

Euler presented this paper to the St Petersburg Academy of Sciences in 1779, and folklore has it that
this question, now known as the Thirty-Six Officers Problem, was initially posed to Euler by Catherine
the Great, who founded the Academy two years before Euler arrived.

Consider the easier “Nine Officers Problem”, where we have three regiments A, B, C each containing
one officer of each rank 1, 2, 3. Then the arrangement

A1 B2 C3
B3 C1 A2
C2 A3 B1

has the property that every row and every column contains exactly one officer from each regiment and
from each rank. Euler thought that the analogous problem for thirty-six officers was impossible. The
first section of this course explores the mathematics that arises from this seemingly innocent problem.

2 Latin squares
We begin with the main definition of the course.

Definition 2.1. For a positive integer n, a Latin square of order n is an n× n array with entries taken
from a set of n symbols (usually {1, 2, . . . , n}) such that every symbol occurs exactly once in each row
and each column.

Example 2.2. Below is a Latin square of order 4. A sudoku is a Latin square of order 9 and a slice of
Battenberg cake is a Latin square of order 2.

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

Example 2.3. For any positive integer n, the n × n array A = (aij) whose rows and columns are
indexed by {0, 1, . . . , n− 1} that is defined as aij = i + j (mod n) is a Latin square of order n with
entries in {0, 1, . . . , n− 1}. The squares obtained for n ∈ {1, 2, 3, 4, 5} are given below. Note that the
Latin square obtained for n = 4 is the same as the one in Example 2.2 but with the symbols relabelled.

0
0 1
1 0

0 1 2
1 2 0
2 0 1

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3
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Example 2.4. The Latin square in Example 2.3 is the Cayley table (or multiplication table) of the group
Z/nZ, the integers under addition modulo n (otherwise known as the cyclic group of order n). Indeed,
the Cayley table of any group is a Latin square (see Problem 1* on Sheet 1). For instance, below we
give the Cayley table of the dihedral group of order six (where a is an rotation of order 3 and b is a
reflection of order 2). Here, and elsewhere, we use A ←→ B to informally mean “A and B are the
same Latin square but with the symbols relabelled”.

1 a a2 b ab a2b
a a2 1 ab a2b b
a2 1 a a2b b ab
b a2b ab 1 a2 a
ab b a2b a 1 a2

a2b ab b a2 a 1

←→

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 1 3 2
5 4 6 2 1 3
6 5 4 3 2 1

3 Orthogonal Latin squares I
The Thirty-Six Officers Problem requires that both the arrangement of ranks and the arrangement of
regiments be Latin squares of order six. However, this alone is not enough: we also need the two Latin
squares to relate to each other in a way that ensures that each regiment contains exactly one officer of
each rank. This additional condition is captured by the following definition.

Definition 3.1. Two n× n arrays A = (aij) and B = (bij) are orthogonal if (aij, bij) 6= (akl , bkl) for all
distinct pairs (i, j), (k, l) ∈ {1, 2, . . . , n}2.

Example 3.2. Consider these two Latin squares of order 3:

A =

1 2 3
2 3 1
3 1 2

B =

1 2 3
3 1 2
2 3 1

The squares A = (aij) and B = (bij) are orthogonal since the pairs (aij, bij) are all distinct:

(1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

Regarding Example 3.2, by using letters rather than numbers for the entries of A, the pair of orthogonal
Latin squares (A, B) is the solution to the Nine Officers Problem from Section 1. In this light, solving
the Thirty-Six Officers Problem amounts to finding two orthogonal Latin squares of order six. Euler
claimed that this was impossible, but it was not until 1900 that Tarry proved the following theorem.

Theorem 3.3. There do not exist two orthogonal Latin squares of order 6.

Proof. Omitted. (This is beyond the scope of this course, but if you are interested, see [Stinson].)

Question 3.4. For which positive integers n, do there exist two orthogonal Latin squares of order n?

Remark 3.5. Terminology. Euler represented a pair of orthogonal Latin squares in one square using
letters from the Latin alphabet for the first square and letters from the Greek alphabet from the second.
For instance, the pair in Example 3.2 would have been written as

aα bβ cγ

bγ cα aβ

cβ aγ bα

He called these Graeco–Latin square. The Latin letters alone gives a Latin square, hence the name.
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Question 3.6. For each positive integer n, what is the maximum size of a set of mutually orthogonal
Latin squares of order n?

Here, and throughout, Latin squares A1, A2, . . . , Ar are said to be mutually orthogonal Latin squares, or
MOLS for short, if Ai and Aj are orthogonal for all distinct i, j ∈ {1, . . . , r}.

We begin by giving an upper bound.

Proposition 3.7. Let A1, A2, . . . , Ar be mutually orthogonal Latin squares of order n > 2. Then r 6 n− 1.

Proof. For 1 6 k 6 r, write Ak = (ak
ij). By relabelling the symbols if necessary, we will assume that

ak
11 = 1 for all 1 6 k 6 r. Define the set

X = {(i, j, k) ∈ {2, . . . , n} × {2, . . . , n} × {1, . . . , r} | ak
ij = 1}.

We will prove the result by counting the elements of X in two different ways.

First fix 1 6 k 6 r. Since ak
11 = 1, we know that 1 appears exactly once in each of the n− 1 rows of the

subgrid obtained from Ak by removing the first row and first column. Therefore,

|X| =
r

∑
k=1
|{(i, j) ∈ {2, . . . , n} × {2, . . . , n} | ak

ij = 1}| = r(n− 1).

Second fix 2 6 i, j 6 n. If 1 6 k, l 6 r are distinct, then since Ak and Al are orthogonal, we know that

(1, 1) = (ak
11, al

11) 6= (ak
ij, al

ij),

so at most one of ak
ij and al

ij is equal to 1. Therefore,

|X| =
n

∑
i=2

n

∑
j=2
|{k ∈ {1, . . . , r} | ak

ij = 1}| 6 (n− 1)2.

We conclude that r(n− 1) = |X| 6 (n− 1)2, so r 6 n− 1, as claimed.

Remark 3.8. Experimental design. In the 1920s, R. A. Fischer pioneered the use of Latin squares in
designing experiments while at Rothamsted Experimental Station. The general idea is roughly the
following. Suppose you want to test n varieties of a crop. Arrange an n× n array of plots in the field.
Since there may be some systematic variation as you move across the field (irrigation, fertility etc),
we should place each variety of crop exactly once in each row and each column of the array. That is,
arrange the crops in a Latin square. If subsequent experiments are to be carried out on the same piece
of land, to avoid systematic effects, we should avoid placing one crop next year in exactly the same n
plots as one of the crops this year. Ideally, the crops in the second experiment should be arranged in
a Latin square orthogonal to the first. Orthogonal Latin squares, and related combinatorial objects,
continue to play an important role in the statistical design of experiments today.

4 Finite fields
Recall from Algebra 2 or Linear Algebra 2 that a field is, roughly speaking, a type of number system
that behaves somewhat like the real numbers. Formally, a field is a set F together with two distinct
distinguished elements zero 0 and one 1 and two operations addition + and multiplication · such
that (F,+) is an abelian group with identity 0, (F \ {0}, ·) is an abelian group with identity 1 and
multiplication distributes over addition (that is, x · (y + z) = x · y + x · z for all x, y, z ∈ F). The sets of
rational, real and complex numbers, with the usual addition and multiplication, are all fields.

This is a course on finite mathematics, so we will work with finite fields. Here is the key result.
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Theorem 4.1. If F is a finite field, then |F| is a power of a prime. Conversely, for every prime p and positive
integer a, there is a unique field F, up to isomorphism, such that |F| = pa and we denote this field Fpa .

Proof. Omitted. (This is proved in Algebra 2. See also [Cameron, Appendix 9.9].)

Example 4.2. The fields of prime order are easy to describe. For a prime p, the finite field Fp is simply
Z/pZ, that is, the integers under addition and multiplication modulo p.

However, in general, a finite field Fpa is not Z/paZ. In the next example we describe F4 explicitly.

Example 4.3. The field F4 is the set {0, 1, α, α2} together with the addition and multiplication given
by the following two tables

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1
α2 α2 α 1 0

and

· 1 α α2

1 1 α α2

α α α2 1
α2 α2 1 α

Alternatively, you can apply the usual field axioms together with the additional rules x + x = 0 for all
x ∈ F4 and α2 = α + 1 (which together imply α3 = 1).

Finite fields play an important role in this course, but you do not need to know more than the content
of this section. In particular, the only fields you will need to be able to concretely work with in this
course (including on problems sheets and in the final exam) will be the fields of prime order and the
field with four elements.

5 Orthogonal Latin squares II
By Proposition 3.7, we cannot find more than n− 1 mutually orthogonal Latin squares of order n.
Using finite fields, we will now show that we can achieve this bound in a special case.

Proposition 5.1. Let n be a power of a prime. Then there exist n− 1 mutually orthogonal Latin squares of
order n.

Proof. Write Fn = {x1, x2, . . . , xn−1, xn = 0}. For each 1 6 k 6 n− 1, define Ak = (ak
ij) as follows

ak
ij = xk · xi + xj.

Let 1 6 k 6 n− 1. We will prove that Ak is a Latin square. We first claim that no symbol appears twice
in any row. To prove this, we fix a row index 1 6 i 6 n and two column indices 1 6 j1, j2 6 n. Observe
that if ak

ij1 = ak
ij2 , then xk · xi + xj1 = xk · xi + xj2 , which implies that xj1 = xj2 and hence j1 = j2. This

proves the claim. Similarly, to see that no symbol appears twice in any column, note that if ak
i1 j = ak

i2 j
for some 1 6 i1, i2, j 6 n, then xk · xi1 + xj = xk · xi2 + xj, which implies that xk · xi1 = xk · xi2 and hence
xi1 = xi2 (since xk 6= 0 and therefore has an inverse) and hence i1 = i2. Therefore, Ak is a Latin square.

Now let 1 6 k, l 6 n− 1 be distinct. We claim that Ak and Al are orthogonal. Let (i1, j1), (i2, j2) ∈
{1, . . . , n}2 such that (ak

i1 j1 , al
i1 j1) = (ak

i2 j2 , al
i2 j2). This implies that

xk · xi1 + xj1 = xk · xi2 + xj2

xl · xi1 + xj1 = xl · xi2 + xj2
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Subtracting the second equation from the first gives

(xk − xl)xi1 = (xk − xl)xi2 ,

which implies that xi1 = xi2 (since (xk − xl) has an inverse as xk 6= xl) and hence i1 = i2. Substituting
xi1 = xi2 into the first equation yields

xk · xi1 + xj1 = xk · xi1 + xj2 ,

so xj1 = xj2 and hence j1 = j2. Therefore, Ak and Al are orthogonal.

Example 5.2. We apply Proposition 5.1 with n = 3. Here F3 = {x1 = 1, x2 = 2, x3 = 0}. We obtain the
following two orthogonal Latin squares of order 3:

A1 = (xi + xj) =

2 0 1
0 1 2
1 2 0

A2 = (2xi + xj) =

0 1 2
2 0 1
1 2 0

6 Direct products
It is commonplace across mathematics to devise constructions that provide new examples of mathe-
matical structures from existing examples. We will do this now for Latin squares.

Definition 6.1. Let A = (aij) be an m×m array and let B = (bij) be an n× n array. The direct product
of A and B, written A× B, is the mn×mn array indexed by {1, . . . , m} × {1, . . . , n} where the entry
in the ((i, j), (k, l)) position is (aik, bjl).

Example 6.2.

1 2
2 1

×
1 2 3
2 3 1
3 1 2

=

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3)
(1, 2) (1, 3) (1, 1) (2, 2) (2, 3) (2, 1)
(1, 3) (1, 1) (1, 2) (2, 3) (2, 1) (2, 2)
(2, 1) (2, 2) (2, 3) (1, 1) (1, 2) (1, 3)
(2, 2) (2, 3) (2, 1) (1, 2) (1, 3) (1, 1)
(2, 3) (2, 1) (2, 2) (1, 3) (1, 1) (1, 2)

←→

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 5 6 1 2 3
5 6 4 2 3 1
6 4 5 3 1 2

Lemma 6.3. Let A be a Latin square of order m and let B be a Latin square of order n. Then A× B is a Latin
square of order mn.

Proof. Let A = (aij) have order m and B = (bij) have order n. Let (i1, j1), (i2, j2), (k, l) ∈ {1, . . . , m} ×
{1, . . . , n}. Suppose that the ((i1, j1), (k, l)) and ((i2, j2), (k, l)) positions of A× B agree. Then (ai1k, bj1l) =

(ai2k, bj2l). Since A is a Latin square, ai1k = ai2k implies that i1 = i2, and since B is a Latin square,
bj1l = bj2l implies that j1 = j2. Therefore, (i1, j1) = (i2, j2), so no symbol is repeated in a column. A
similar argument shows that no symbol is repeated in a row, so A× B is a Latin square. The rows and
columns of A× B are indexed by {1, . . . , m} × {1, . . . , n}, so it is a Latin square of order mn.

Lemma 6.4. Let A1 and A2 be orthogonal Latin squares of order m and let B1 and B2 be orthogonal Latin
squares of order n. Then A1 × B1 and A2 × B2 are orthogonal Latin squares of order mn.

Proof. By Lemma 6.3, A1 × B1 and A2 × B2 are Latin squares of mn. We need to prove that they are
orthogonal. Write A1 = (a1

ij), A2 = (a2
ij), B1 = (b1

ij), B2 = (b2
ij). Let ((ii, j1), (k1, l1)), ((i2, j2), (k2, l2)) ∈

({1, . . . , m} × {1, . . . , n})2 such that

((a1
i1k1

, b1
j1l1), (a2

i1k1
, b2

j1l1)) = ((a1
i2k2

, b1
j2l2), (a2

i2k2
, b2

j2l2)).
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Since A1 and A2 are orthogonal, (a1
i1k1

, a2
i1k1

) = (a1
i2k2

, a2
i2k2

) implies that i1 = i2 and k1 = k2. Similarly,
since B1 and B2 are orthogonal, (b1

j1l1
, b2

j1l1
) = (b1

j2l2
, b2

j2l2
) implies that j1 = j2 and l1 = l2. Therefore,

((i1, j1), (k1, l1)) = ((i2, j2), (k2, l2)). We conclude that A1 × B1 and A2 × B2 are orthogonal.

7 Orthogonal Latin squares III
We will now use the direct product construction to obtain sets of mutually orthogonal Latin squares.

Proposition 7.1. Let n = pa1
1 pa2

2 · · · p
as
s for positive integers a1, a2, . . . , as and distinct primes p1, p2, . . . , ps.

Let m be the minimum of pa1
1 , pa2

2 , . . . , pas
s . Then there exist m− 1 mutually orthogonal Latin squares of order n.

Proof. By Proposition 5.1, for each 1 6 i 6 s, there exists a set {Ai1, . . . , Ai(m−1)} of m− 1 mutually
orthogonal Latin squares of order pai

i . For each 1 6 j 6 m− 1, write Bj = A1j × A2j × · · · × Asj, which,
by Lemma 6.3 is a Latin square of order n = pa1

1 pa2
2 · · · p

as
s . By Lemma 6.4, {B1, B2, . . . , Bm−1} is a set of

m− 1 mutually orthogonal Latin squares of order n.

Corollary 7.2. Let n 6≡ 2 (mod 4). Then there exist two orthogonal Latin squares of order n.

Proof. Write n = pa1
1 pa2

2 · · · p
as
s for positive integers a1, a2, . . . , as and distinct primes p1, p2, . . . , ps and

let m be the minimum of pa1
1 , pa2

2 , . . . , pas
s . Let 1 6 i 6 s. If pi is odd, then pai

i > pi > 3. If pi = 2, then
since n 6≡ 2 (mod 4), we must have ai > 2, so pai

i > 4. Therefore, m > 3, so Proposition 7.1 implies
that there exists a set of m− 1 > 2 mutually orthogonal Latin squares of order n, as required.

Euler knew that there exist two orthogonal Latin squares of order n whenever n 6≡ 2 (mod 4) but
he conjectured that it was impossible when n ≡ 2 (mod 4). As we saw earlier, he was right that it
is impossible when n ∈ {2, 6}. However, almost two centuries later, Euler was proved wrong! On
26 April 1959, Bose, Parker and Shrikhande appeared on the front page of the New York Times with
the headline “Major Mathematical Conjecture Propounded 177 Years Ago Is Disproved”. They had
proved the following theorem.

Theorem 7.3. There exist two orthogonal Latin squares of order n if and only if n 6∈ {2, 6}.

Proof. Omitted. (The existence of two orthogonal Latin squares of order n > 10 when n ≡ 2 (mod 4)
is given in [van Lint & Wilson, pages 290–294], but the construction is quite technical.)

Example 7.4. Here is an “Euler spoiler”, two orthogonal Latin squares of order 10 (we use letters for
the first square and numbers for the second). See also the front cover of [Wilson & Watkins].

A1 B2 C3 D4 E5 F6 G7 H8 I9 J0
B3 C0 A4 E9 I6 D7 J2 F1 G8 H5
C5 J4 E8 G6 A7 H3 B0 I2 D1 F9
H4 E1 D6 J7 F0 B5 C9 G3 A2 I8
E2 A6 H7 I5 B9 C8 F4 D0 J3 G1
J6 F7 G9 B8 C1 I4 E3 A5 H0 D2
I7 D8 B1 C2 G4 E0 H6 J9 F5 A3
F8 H9 J5 A0 D3 G2 I1 B4 C6 E7
D9 G5 I0 F3 H2 J1 A8 E6 B7 C4
G0 I3 F2 H1 J8 A9 D5 C7 E4 B6
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8 Transversals of Latin squares
Let n be a positive integer and assume that n 6∈ {2, 6}. Then there exist two orthogonal Latin squares
of order n, but that is not to say that every Latin square of order n has an orthogonal mate.

Definition 8.1. An orthogonal mate of a Latin square A is any Latin square that is orthogonal to A.

Indeed we have the following general theorem.

Theorem 8.2. For all integers n > 4, there exists a Latin square of order n that is not orthogonal to any other
Latin square.

Euler knew that Theorem 8.2 was true for even n and the case n ≡ 1 (mod 4) was proved in 1944, but
the case n ≡ 3 (mod 4) remained open until 2005! The aim of this section is to prove Theorem 8.2. We
will do so by introducing the concept that was actually Euler’s main focus: transversals.

Definition 8.3. Let A be a Latin square of order n. A transversal of A is a set of n entries such that no
two entries share a column, row or symbol.

Example 8.4. The set {(1, 1), (2, 2), (3, 3)} is a transversal of A but not a transversal of B.

A =

1 2 3
2 3 1
3 1 2

B =

1 2 3
3 1 2
2 3 1

The next lemma highlights the significance of transversals.

Lemma 8.5. Let A be a Latin square. Then there exists a Latin square that is orthogonal to A if and only if A
is the union of disjoint transversals.

Proof. Let A = (aij) be a Latin square of order n. First, assume that B = (bij) is orthogonal to A. We
claim that A is the union of disjoint transversals. For 1 6 k 6 n, let Tk = {(i, j) ∈ {1, . . . , n}2 | bij = k}.
Clearly, {1, 2, . . . , n}2 =

⋃n
k=1 Tk is a disjoint union. Fix 1 6 k 6 n. We claim that Tk is a transversal.

We first observe that no row is repeated in Tk, since if (i, j1), (i, j2) ∈ Tk, then bij1 = k = bij2 , but B is a
Latin square, so j1 = j2. Similarly, no column is repeated, since if (i1, j), (i2, j) ∈ Tk, then bi1 j = k = bi2 j,
so i1 = i2. Finally, no symbol is repeated since if (i1, j1), (i2, j2) ∈ Tk with ai1,j1 = ai2,j2 , then

(ai1 j1 , bi1 j1) = (ai1 j1 , k) = (ai2 j2 , k) = (ai2 j2 , bi2 j2),

but A and B are orthogonal, so (i1, j1) = (i2, j2). This proves that Tk is a transversal of A.

Conversely, assume that A is the union of disjoint transversals, T1, T2, . . . , Tn. Define the n× n array
B = (bij) as bij = k if and only if (i, j) ∈ Tk. An argument very similar to that of the first half of the
proof shows that B is orthogonal to A (see Problem 5 on Sheet 2).

The key lemma for proving Theorem 8.2 is the following.

Lemma 8.6. Let A = (aij) be a Latin square of order n with entries in {0, 1, . . . , n− 1}. Let T be a transversal
of A. Then

∑
(i,j)∈T

(i + j− aij) (mod n) =

{
0 if n is odd
n
2 if n is even.
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Proof. Since T is a transversal of A, every element of {0, 1, . . . , n− 1} appears in each coordinate of
exactly one element of {(i, j, aij) | (i, j) ∈ T}. Therefore,

∑
(i,j)∈T

(i + j− aij) (mod n) =

 ∑
(i,j)∈T

i + ∑
(i,j)∈T

j− ∑
(i,j)∈T

aij

 (mod n)

=

(
n(n− 1)

2
+

n(n− 1)
2

− n(n− 1)
2

)
(mod n)

=

{
0 if n is odd
n
2 if n is even.

(mod n)

Proof of Theorem 8.2. First assume that n is even. Let A = (aij) be the Latin square of order n whose
rows and columns are indexed by {0, 1, . . . , n− 1} that is defined as aij = i + j (mod n). Suppose there
exists a Latin square B orthogonal to A. Then Lemma 8.5 implies that A has a transversal T. Now

∑
(i,j)∈T

(i + j− aij) (mod n) = ∑
(i,j)∈T

0 (mod n) = 0,

which contradicts Lemma 8.6. Therefore, A is not orthogonal to any Latin square.

Now assume that n is odd. We make a more delicate choice of order n Latin square A = (aij). Define

aij =



1 if (i, j) ∈ {(0, 0), (1, n− 1)}
0 if (i, j) ∈ {(1, 0), (2, n− 1)}
j + 2 if i = 0 and j ∈ {1, 3, 5, . . . , n− 2}
j if i = 2 and j ∈ {1, 3, 5, . . . , n− 2}
i + j otherwise.

It is easy to check that A is indeed a Latin square. Suppose there exists a Latin square B orthogonal to
A. Then Lemma 8.5 implies that there is a transversal T of A containing (1, 0). Let (i, j) ∈ T \ {(1, 0)}.
We claim that

i + j− aij =


−2 if i = 0 and j ∈ {1, 3, 5, . . . , n− 2}
2 if i = 2 and j ∈ {1, 3, 5, . . . , n− 2}
0 otherwise.

Certainly, if j ∈ {1, 3, 5, . . . , n− 2}, then i + j− aij = 0 + j− (j + 2) = −2 if i = 0 and i + j− aij =

2 + j− j = 2 if i = 2. Otherwise, since (i, j) ∈ T, we know that i 6= 1 and j 6= 0, and in addition, aij 6= 0
since a10 = 0, so aij = i + j, which implies that i + j− aij = 0. Therefore, (i + j− aij) (mod n) is 0 for
every (i, j) ∈ T \ {(1, 0)} except for at most one choice of (i, j) where it is 2 and at most one choice of
(i, j) where it is −2. Therefore,

0 = ∑
(i,j)∈T

(i + j− aij) (mod n) = (1 + 0− a10) + ∑
(i,j)∈T\{(1,0)}

(i + j− aij) (mod n) = 1 + x (mod n),

where x ∈ {−2, 0, 2}, which is a contradiction, noting that n > 4. Therefore, there is no Latin square
orthogonal to A. This completes the proof.

Remark 8.7. The Hall–Paige Conjecture. The Cayley tables of which finite groups have an orthogonal
mate? Problem 4 on Sheet 2 establishes that if G is a cyclic group of order n, then the Cayley table
of G does not have an orthogonal mate if and only if n is even. Let G be any finite group. In 1955,
Hall and Paige proved that if the Cayley table of G does not have an orthogonal mate, then the Sylow
2-subgroup of G is trivial or noncyclic, and the converse became known as the Hall–Paige Conjecture.
This was not proved until 2019 and the proof uses the Classification of Finite Simple Groups.
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9 Projective planes
We now turn to a seemingly entirely different sort of mathematical object, one that captures our familiar
ideas of perspective (that is, when three-dimensional geometry is presented on a two-dimensional
canvas with the consequence that “parallel lines meet”).

Definition 9.1. A projective plane is a set P of points and a set L of subsets of P called lines such that

(1) for any two distinct points p, p′ ∈ P there is a unique line l ∈ L containing both p and p′

(2) for any two distinct lines l, l′ ∈ L there is a unique point p ∈ P contained in both l and l′

(3) there exist four points in P , no three of which are contained in a common line of L.

Let us comment on the axioms in Definition 9.1. Axiom (1) is the familiar geometric fact that two
points define a unique line. Axiom (2) is where the idea of perspective (and the word “projective”)
appear: any two lines intersect (in a unique point). Axiom (3) is a nondegeneracy condition that is
included simply to avoid degenerate examples. These axioms are investigated in Problem 2 on Sheet 2.

The motivating example of projective planes is the real projective plane discussed in Example 10.1.
However, in this course, we will be mainly concerned with finite objects. Indeed, we say that a
projective plane (P ,L) is a finite projective plane if P (and hence L) is finite.

Example 9.2. Let P = {1, 2, 3, 4, 5, 6, 7} and

L = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.

Then (P ,L) is a projective plane, known as the Fano plane.

1

5

3

7

4

2

65

3

6

The following result gives important combinatorial information about finite projective planes.

Proposition 9.3. Let (P ,L) be a finite projective plane. Then there exists a positive integer n such that

(i) |P| = n2 + n + 1

(ii) |L| = n2 + n + 1

(iii) every point lies is on exactly n + 1 lines

(iv) every line contains exactly n + 1 points.

Proposition 9.3 motivates the following definition.

Definition 9.4. The order of a finite projective plane (P ,L) is the positive integer n such that

|P| = |L| = n2 + n + 1.

9



We begin with two lemmas.

Lemma 9.5. Let (P ,L) be a finite projective plane. Let p ∈ P and l ∈ L such that p 6∈ l. The number of lines
containing p equals the number of points contained in l.

Proof. Write l = {p1, p2, . . . , pm}. Since p 6∈ l, for each 1 6 i 6 m, Axiom (1) implies that there is a
unique line li that contains p and pi. Let 1 6 i, j 6 m and suppose that li = lj. Note that li 6= l since
p ∈ li but p 6∈ l. Therefore, Axiom (2) implies that |l ∩ li| = 1, but pi, pj ∈ l ∩ li, so pi = pj and hence
i = j. Therefore, we deduce that l1, l2, . . . , lm are distinct. Now let l′ be any line containing p. By
Axiom (2), |l ∩ l′| = 1, so fix 1 6 i 6 m such that l ∩ l′ = {pi}. Now p and pi are contained on li and l′,
so Axiom (1) forces l′ = li. Therefore, l1, l2, . . . , lm are the distinct lines through p.

Lemma 9.6. Let (P ,L) be a finite projective plane. Then all lines in L contain the same number of points.

Proof. Seeking a contradiction, suppose that l, l′ ∈ L contain different numbers of points. If there
exists p ∈ P such that p 6∈ l and p 6∈ l′, then Lemma 9.5 implies that |l| and |l′| both equal the number
of lines through p, which is a contradiction, so every point in P is contained in l or l′. In particular, by
Axiom (2), every line in L other than l and l′ has two points (one on l and one on l′). Write l ∩ l′ = {q}.
If |l| > 3 and |l′| > 3, then we can fix distinct p1, p2 ∈ l \ {q} and p′1, p′2 ∈ l′ \ {q}, but then {p1, p′1},
the unique line containing p1 and p′1, is disjoint from {p2, p′2}, the unique line containing p2 and p′2,
which contradicts Axiom (2). Therefore, without loss of generality, either |l| = |P| and |l′| = 1, or
|l| = |P| − 1 and |l′| = 2. In particular, given any four points of P , at least three are contained in l,
which contradicts Axiom (3). Therefore, any two lines contain the same number of points.

Proof of Proposition 9.3. By Lemma 9.6, we can fix a positive integer n such that |l| = n + 1 for all l ∈ L.
Let p ∈ P . There exists l ∈ L such that p 6∈ l (see Problem 9 on Sheet 2), so by Lemma 9.5, the number
of lines through p equals |l| = n + 1. This proves (iii) and (iv).

Now consider (i) and (ii). Define the set

X = {(p, l) ∈ P ×L | p ∈ l}.

We will count the number of elements of X in two different ways. Since each point in P lies on exactly
n + 1 lines, we have |X| = |P|(n + 1). Since each line in L contains exactly n + 1 points, we have
|X| = |L|(n + 1). Therefore,

|L| = |P|.

Next define the set
Y = {(p, q, l) ∈ P ×P ×L | p, q ∈ l and p 6= q}.

We now count the elements of Y in two different ways. For any line l ∈ L, there are exactly n(n + 1)
pairs of distinct points on l, so |Y| = |L|n(n + 1). For any pair of distinct points (p, q) ∈ P , by
Axiom (1), there is a unique line l ∈ L such that p, q ∈ l, so |Y| = |P|(|P| − 1). Therefore,

|L| = |P|(|P| − 1)
n(n + 1)

Equating these two expressions for |L| gives

|P| = |P|(|P| − 1)
n(n + 1)

,

so n(n + 1) = |P| − 1 and hence |P| = n2 + n + 1 and |L| = |P| = n2 + n + 1, as required.
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Example 9.7. The Fano plane from Example 9.2 has order 2 since it has 7 = 22 + 2+ 1 points. Moreover,
in agreement with Proposition 9.3, for this plane, each point is contained on 3 = 2 + 1 lines and each
line contains 3 = 2 + 1 points.

The numerical properties in Proposition 9.3 actually fully characterise finite projective planes.

Proposition 9.8. Let P be a finite set and let L be a set of subsets of P . Let n > 2. Then (P ,L) is a finite
projective plane of order n if and only if

(I) |P| = n2 + n + 1

(II) |l| = n + 1 for all l ∈ L

(III) for any distinct p, p′ ∈ P there exists a unique l ∈ L such that p, p′ ∈ l.

Proof. One direction is given by Proposition 9.3 and the other is proved in Problem 10 on Sheet 2.

10 Projective planes and finite fields
Let us present the motivating example of a projective plane.

Example 10.1. Let us introduce the real projective plane P2(R) (commonly denoted RP2), which, roughly
speaking, is the standard Euclidean plane together with a “line at infinity” that allows parallel lines to
meet. More formally, write l∞ = {pa | a ∈ R∪ {∞}}, and define the set of points P = R2 ∪ l∞ and the
set of lines L = {l∞} ∪

⋃
a∈R∪{∞} La, where

La =

{
{{(x, ax + b) | x ∈ R} ∪ {pa}} | b ∈ R} if a ∈ R
{{(c, y) | y ∈ R} ∪ {p∞}} | c ∈ R} if a = ∞.

Then P2(R) = (P ,L) is a projective plane.

It is easy to see that if we replaced R by Q or C in Example 10.1, then we would still obtain a projective
plane. Indeed, we have the following general result.

Definition 10.2. Let F be a field. Fix a symbol ∞ not in F and a set of symbols l∞ = {pa | a ∈ F∪ {∞}}.
The projective plane over F is P2(F) = (P ,L) where P = F2 ∪ l∞ and L = {l∞} ∪

⋃
a∈F∪{∞} La, where

La =

{
{{(x, ax + b) | x ∈ F} ∪ {pa}} | b ∈ F} if a ∈ F
{{(c, y) | y ∈ F} ∪ {p∞}} | c ∈ F} if a = ∞.

Proposition 10.3. Let F be a field. The projective plane P2(F) over F is a projective plane.

Proof. We need to verify the three axioms in Definition 9.1.

Axiom (1) Let p, p′ ∈ P be distinct. First assume that p, p′ ∈ l∞. Then l∞ is the unique line containing p
and p′ since no other lines in L contain more than one point in l∞. Next assume that p ∈ l∞ and p′ 6∈ l∞.
Write p = pa for some a ∈ F∪{∞} and p′ = (u, v) for u, v ∈ F. If a = ∞, then {(u, y) | y ∈ F} ∪ {p∞}}
is the unique line inL containing p and p′. If a ∈ F, then there exists a unique b ∈ F such that v = au+ b
and {(x, ax + b) | x ∈ F} ∪ {pa} is the unique line in L containing p and p′. Finally assume that
p, p′ 6∈ l∞ and write p = (u, v) and p′ = (u′, v′). If u = u′, then {(u, y) | y ∈ F} ∪ {p∞}} is the unique
line in L containing p and p′. If u 6= u′, then for a = (v− v′)/(u− u′), since v− au = v′ − au′ there
exists a unique b ∈ F such that v = au + b and v′ = au′ + b, so {(x, ax + b) | x ∈ F} ∪ {pa} is the
unique line in L that contains both p and p′.
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Axiom (2) Let l, l′ ∈ L be distinct. If l′ = l∞, then l ∩ l∞ = {pa} for some a ∈ F ∪ {∞}. It now remains
to assume that neither l nor l′ is l∞. Fix a, a′ ∈ F ∪ {∞} such that pa ∈ l and pa′ ∈ l′. First assume
that a = a′ = ∞. Then l = {(c, y) | y ∈ F} ∪ {p∞} and l′ = {(c′, y) | y ∈ F} ∪ {p∞}, so l ∩ l′ = {p∞}.
Next assume that a 6= a′ = ∞. Then l = {(x, ax + b) | x ∈ F} ∪ {pa} and l′ = {(c, y) | y ∈ F} ∪ {p∞},
so l ∩ l′ = {(c, ac + b)}. Now assume that a = a′ 6= ∞. Then l = {(x, ax + b) | x ∈ F} ∪ {pa} and
l′ = {(x, ax + b′) | x ∈ F} ∪ {pa} with b 6= b′, so l ∩ l′ = {pa} since ax + b 6= ax + b′ for all x. Finally
assume that a, a′ 6= ∞ are distinct. Then l = {(x, a′x + b) | x ∈ F} ∪ {pa} and l′ = {(x, a′x + b) | x ∈
F} ∪ {pa′}, so l ∩ l′ = {(x, ax + b)} where x = (b′ − b)/(a− a′).

Axiom (3) It is easy to check that no three of (0, 0), (0, 1), (1, 0), (1, 1) are collinear.

Corollary 10.4. Let n be a power of a prime. Then there exists a finite projective plane of order n.

Proof. By Proposition 10.3, P2(Fn) is a finite projective plane of order n.

Example 10.5. We construct P2(F2) = (P ,L). Here P = {(0, 0), (0, 1), (1, 0), (1, 1), p0, p1, p∞} and

L0 : {(x, 0) | x ∈ F2} ∪ {p0} = {(0, 0), (1, 0), p0},
L1 : {(x, x) | x ∈ F2} ∪ {p1} = {(0, 0), (1, 1), p1},
L∞ : {(0, y) | y ∈ F2} ∪ {p∞} = {(0, 0), (0, 1), p∞},

{(x, 1) | x ∈ F2} ∪ {p0} = {(0, 1), (1, 1), p0},
{(x, x + 1) | x ∈ F2} ∪ {p1} = {(0, 1), (1, 0), p1},
{(1, y) | y ∈ F2} ∪ {p∞} = {(1, 0), (1, 1), p∞},

l∞ = {p0, p1, p∞}.

This is the Fano plane from Example 9.2.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

p0

p1

p∞

←→

(0, 0)

(0, 1)

(1, 0)

(1, 1)

p∞

p0

p1(0, 1)

(1, 0)

p1

11 Projective planes and Latin squares
As with sets of n− 1 mutually orthogonal Latin squares of order n, we have seen that finite projective
planes of order n exist when n is a power of a prime, but we have no examples otherwise. This is not a
coincidence.

Theorem 11.1. Let n > 2. Then there exists a finite projective plane of order n if and only if there exist n− 1
mutually orthogonal Latin squares of order n.

Proof. This proof is nonexaminable.

Write I = {1, 2, . . . , n}.

Step 1: n− 1 MOLS of order n =⇒ projective plane of order n

Let A1, A2, . . . , An−1 be mutually orthogonal Latin squares of order n, and for each 1 6 k 6 n− 1,
write Ak = (ak

ij). Fix a set of symbols l∞ = {p0, p1, . . . , pn}. Let P = I2 ∪ l∞ and L = {l∞} ∪
⋃n

k=0 Lk,
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where

Lk =


{{(x, j) | x ∈ I} ∪ {p0}} | j ∈ I} if k = 0
{{(i, j) | ak

ij = m} ∪ {pk}} | m ∈ I} if 1 6 k 6 n− 1
{{(i, y) | y ∈ I} ∪ {pn}} | i ∈ I} if k = n.

We leave it as an exercise to verify that (P ,L) satisfies Axioms (1) to (3).

Step 2: projective plane of order n =⇒ n− 1 MOLS of order n

Let (P ,L) be a finite projective plane of order n. Fix a line l∞ = {p0, p1, . . . , pn} ∈ L. Define P ′ =
P \ l∞ and L′ = L \ {l∞}. For each 0 6 k 6 n, define L′k = {l \ {pk} | l ∈ L′ and pk ∈ l} and write
L′k = {lk1, . . . , lkn}. Define f : I2 → P ′ as { f (i, j)} = l0i ∩ lnj. Axiom (1) ensures that f is a well defined
bijection. For each 1 6 k 6 n− 1, let Ak = (ak

ij) be the n× n array defined as ak
ij = m if and only if

f (i, j) ∈ lkm. We claim that A1, A2, . . . , An−1 are mutually orthogonal Latin squares.

Let 1 6 k 6 n. We will prove that Ak is a Latin square. We claim that no symbol appears twice in
any row. Fix a 1 6 i, j1, j2 6 n. Observe that if ak

ij1 = m = ak
ij2 , then f (i, j1), f (i, j2) ∈ lkm but also

f (i, j1), f (i, j2) ∈ l0i. This implies that f (i, j1) = f (i, j2) and hence j1 = j2. This proves the claim.
Similarly, to see that no symbol appears twice in any column, note that if ak

i1 j = m = ak
i2 j for some

1 6 i1, i2, j 6 n, then f (i1, j), f (i2, j) ∈ lkm and f (i1, j), f (i2, j) ∈ lnj, which implies that f (i1, j) = f (i2, j)
and hence i1 = i2. Hence, Ak is a Latin square.

Now let 1 6 k1, k2 6 n be distinct. We claim that Ak1 and Ak2 are orthogonal. For a contradiction,
suppose otherwise. Then there exist distinct (i1, j1), (i2, j2) ∈ {1, . . . , n}2 such that (ak1

i1 j1
, ak2

i1 j1
) =

(ak1
i2 j2

, ak2
i2 j2

). This implies that ak1
i1 j1

= m1 = ak1
i2 j2

and ak1
i2 j2

= m2 = ak2
i2 j2

, which in turn implies that
f (i1, j1), f (i2, j2) ∈ lk1m1 and f (i1, j1), f (i2, j2) ∈ lk2m2 , which contradicts Axiom (1). Therefore, A1, A2,
. . . , An−1 are mutually orthogonal Latin squares of order n.

Example 11.2. The following indicates the proof of Theorem 11.1 with n = 2.

1 2
2 1

←→

(1, 1)

(1, 2)

(2, 1)

(2, 2)

←→

(1, 1)

(1, 2)

(2, 1)

(2, 2)

p0

p1

p2

←→

12 The Bruck–Ryser Theorem
A finite projective plane of order n (or equivalently, n− 1 mutually orthogonal Latin squares of order
n) exist if n is a power of a prime. Do they exist for any other values of n? Very little is known. The
most significant result is the following.

Theorem 12.1 (Bruck–Ryser Theorem). Let n ≡ 1 or 2 (mod 4). If there exists a projective plane of order n,
then n is the sum of two squares of integers.

Consider n 6 14. By Corollary 10.4, projective planes of order n exist when n ∈ {2, 3, 4, 5, 7, 9, 11, 13},
and by the Bruck–Ryser Theorem, they do not exist when n ∈ {6, 14}. However, since 10 = 12 + 32,
the Bruck–Ryser Theorem does not exclude the possibility of a finite projective plane of order 10. In
1989, by way of a huge computation, Lam, Swiercz and Thiel showed that no such plane could exist. It
is still unknown whether there exists a finite projective plane of order 12.
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The remainder of this section is nonexaminable.

Let us now discuss the proof of the Bruck–Ryser Theorem. Here number theory and linear algebra
play important roles. We follow the discussion in [Section 9.8, Cameron], where you can find further
details, including proofs of the following three number theoretic lemmas, which we omit here.

Lemma 12.2 (Lagrange’s Four Squares Theorem). Every positive integer is the sum of four integer squares.

Lemma 12.3 (Four Squares Identity). Let a1, a2, a3, a4, x1, x2, x3, x4 ∈ Z. Then

(a2
1 + a2

2 + a2
3 + a2

4)(x2
1 + x2

2 + x2
3 + x2

4) = y2
1 + y2

2 + y2
3 + y2

4

where
y1 = a1x1 − a2x2 − a3x3 − a4x4

y2 = a1x2 + a2x1 + a3x3 − a4x3

y3 = a1x3 + a3x1 + a4x2 − a2x4

y4 = a1x4 + a4x1 + a2x3 − a3x2.

Lemma 12.4. Let n ∈ Z. If there exist x, y, z ∈ Z such that x2 + y2 = nz2 and (x, y, z) 6= (0, 0, 0), then n is
the sum of two integer squares.

We now prove the Bruck–Ryser Theorem.

Proof of Theorem 12.1. Let (P ,L) be a projective plane of order n. Let N = n2 + n + 1 and note that
N ≡ 3 (mod 4). Write P = {p1, . . . , pN} and L = {l1, . . . , lN}.

Let B = (bij) be the N × N matrix defined as

bij =

{
1 if pi ∈ lj

0 otherwise.

The (i, j)th entry of BBT is the dot product bi.bj, which is the number of lines containing pi and pj, so

(BBT)ij =

{
n + 1 if i = j
1 otherwise.

Therefore, if I is the N × N identity matrix and J is the N × N all-ones matrix, then BBT = nI + J.

Let x1, . . . , xN+1 be variables and write x = (x1, . . . , xN). Define z = (z1, . . . , zN) = xB, noting that
each zi is a nonzero integer linear combination of the x1, . . . , xN . Then

zzT = (xB).(xB)T = xBBTxT = x(nI + J)xT = nxxT + xJxT. (1)

Note that zzT = z2
1 + · · ·+ z2

N and xxT = x2
1 + · · ·+ x2

N , and if we define w = x1 + · · ·+ xN , then

xJxT = (w, . . . , w).(x1, . . . , xN) = w2.

Therefore, from (1) we obtain

z2
1 + · · ·+ z2

N = n(x2
1 + · · ·+ x2

N) + w2,

which we rewrite as

z2
1 + · · ·+ z2

N + nx2
N+1 = n(x2

1 + x2
2 + x2

3 + x2
4) + · · ·+ n(x2

N−2 + x2
N−1 + x2

N + x2
N+1) + w2. (2)
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By Lemma 12.2, there exist a1, a2, a3, a4 ∈ Z such that n = a2
1 + a2

2 + a2
3 + a2

4. By Lemma 12.3, for each
0 6 i < (N + 1)/4, we may write

n(x2
4i+1 + x2

4i+2 + x2
4i+3 + x2

4i+4) = (a2
1 + a2

2 + a2
3 + a2

4)(x2
4i+1 + x2

4i+2 + x2
4i+3 + x2

4i+4)

= y2
4i+1 + y2

4i+2 + y2
4i+3 + y2

4i+4,

where y4i+1, y4i+2, y4i+3, y4i+4 are a nonzero integer linear combinations of x1, . . . , xN+1. Therefore,
from (2) we obtain

z2
1 + · · ·+ z2

N + nx2
N+1 = y2

1 + · · ·+ y2
N+1 + w2. (3)

We are now going to repeatedly take special cases of (3) and in this way eliminate the variables
x1, . . . , xN and hence y1, . . . , yN and z1, . . . , zN .

We begin by eliminating x1. The coefficient of x1 must be nonzero in the expressions for at least one of
y1, y2, y3, y4 and at least one of z1, . . . , zN ; without loss of generality, assume that the coefficient a1 is
nonzero in the expression

y1 = a1x1 − a2x2 − a3x3 − a4x4

and the coefficient b11 is nonzero in the expression

z1 = b11x1 + · · ·+ bN1xN .

We now divide into two cases: a1 6= b11 and a1 = b11.

If a1 6= b11, then we add the constraint that

x1 = (a1 − b11)
−1((a2 + b21)x2 + (a3 + b31)x3 + (a4 + b41)x4 + b51x5 + · · ·+ bN1xN1),

which implies that y1 = z1.

If a1 = b11, then we add the constraint that

x1 = (a1 + b11)
−1((a2 − b21)x2 + (a3 − b31)x3 + (a4 − b41)x4 − b51x5 + · · · − bN1xN1),

which implies that y1 = −z1.

In both cases, y2
1 = z2

1, and we can also replace the expression x1 + · · ·+ xN for w by a rational linear
combination of x2, . . . , xN . Therefore,

z2
2 + · · ·+ z2

N + nx2
N+1 = y2

2 + · · ·+ y2
N+1 + w2.

We now apply this same procedure a further N − 1 times. For each 1 6 k 6 N, at the kth stage, we
choose xk as a particular rational linear combination of xk+1, . . . , xN+1 such that yk ∈ {zk,−zk} and
we update the expression for w so that it is a rational linear combination of xk+1, . . . , xN+1. In this way,
we eventually obtain the equation

nx2
N+1 = y2

N+1 + w2, (4)

where yN+1 = p1
q1

xN+1 and w = p2
q2

xN+1 for some nonzero p1, q1, p2, q2 ∈ Z.

(There is a technicality that has been overlooked in this discussion. Why do we know that xk will have
a nonzero coefficient in one of the (updated) defining rational linear combinations of xk, . . . , xN+1 for
at least one of yk, . . . , yN+1 and at least one of zk, . . . , zN? The answer: this is ensured by the fact that
the equation (3) defines a positive definite quadratic form. It would be too much of a digression into
linear algebra to explain what this means.)

We now choose xN+1 = q1q2, which gives the equation

n(q1q2)
2 = (p1q2)

2 + (p2q1)
2.

Therefore, Lemma 12.4 implies that n is the sum of two squares.
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13 Desargues’ Theorem
This section is nonexaminable.

For any field F, by Proposition 10.3, we can construct the projective plane P2(F). In particular, whenever
n is a power of a prime, P2(Fn) gives an example of a finite projective plane of order n. At the end of
the previous section, we noted that there are no known examples of finite projective planes of any
other order. However, there are many other examples of finite projective planes other than P2(Fn).

In this section, we will give the geometric criterion that characterises the projective planes P2(F),
where F is a field, among the more general class of projective planes.

We begin with some terminology.

Definition 13.1. Let (P ,L) be a projective plane.

(i) Points p1, p2, . . . , pk ∈ P are said to be collinear if there exists l ∈ L such that p1, p2, . . . , pk ∈ l.

(ii) Lines l1, l2, . . . , lk ∈ L are said to be concurrent if there exists p ∈ P such that p ∈ l1 ∩ l2 ∩ · · · ∩ lk.

The focus of this section is on triangles, which are sets of three points that are not collinear.

Definition 13.2. Let T1 = {a1, b1, c1} and T2 = {a2, b2, c2} be triangles. Let Ai, Bi, Ci be the lines
containing {bi, ci}, {ai, ci}, {ai, bi} respectively.

(i) The triangles T1 and T2 are perspective from a point if there exists p ∈ P such that each of {p, a1, a2},
{p, b1, b2} and {p, c1, c2} are sets of collinear points.

(ii) Two triangles T1 and T2 are perspective from a line if there exists l ∈ L such that each of {l, A1, A2},
{l, B1, B2} and {l, C1, C2} are sets of concurrent lines.

The following theorem generalises a well known result about P2(R), first proved by Desargues.

Theorem 13.3 (Desargues’ Theorem). Let F be a field. In P2(F), two triangles are perspective from a point if
and only if they are perspective from a line.

Proof. Omitted. (This is beyond the scope of the course.)

Desargues’ Theorem motivates the next definition.

Definition 13.4. A projective plane is said to desarguesian if two triangles are perspective from a point
if and only if they are perspective from a line.

Let us make precise what it means for two projective planes to be essentially the same.

Definition 13.5. Projective planes (P1,L1) and (P2,L2) are said to be equivalent if there exists a
bijection f : P1 → P2 such that for l ⊆ P1 we have that l ∈ L1 if and only if f (l) ∈ L2.

We can now characterise the projective planes that arise from fields.

Theorem 13.6. A projective plane is desarguesian if and only if it is equivalent to P2(F) for a field F.

Proof. Omitted. (This is beyond the scope of the course.)

To return to the motivation of this section, let us record that all finite projective planes of order n < 9
are desarguesian, but examples of nondesarguesian finite projective planes of order n have been
constructed for all n = p2k > 9 where p is prime. The first example, of order 9, was discovered by
Veblen and Wedderburn in 1907, and this construction was generalised to all p2k > 9 by Hall in 1943.
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14 Cyclic difference sets
Let us now turn to a seemingly number theoretic object. Recall that Z/vZ is the set of integers
{0, 1, . . . , v− 1} under addition and multiplication modulo v.

Definition 14.1. A (v, k, λ) cyclic difference set is a subset S ⊆ Z/vZ of size k such that computing all
differences x− y for distinct x, y ∈ S gives every nonzero element of Z/vZ exactly λ times.

Example 14.2. The nonzero differences between elements of S = {1, 2, 4} ⊆ Z/7Z are

4− 2 (mod 7) = 2, 4− 1 (mod 7) = 3, 2− 1 (mod 7) = 1,

2− 4 (mod 7) = 5, 1− 4 (mod 7) = 4, 1− 2 (mod 7) = 6.

Since we obtain each of 1, 2, 3, 4, 5, 6 exactly once, S is a (7, 3, 1) cyclic difference set.

The three parameters of a cyclic difference set are related in the following way.

Lemma 14.3. Let S ⊆ Z/vZ be a (v, k, λ) cyclic difference set. Then k(k− 1) = λ(v− 1).

Proof. We count D = {(x, y, x − y) ∈ S2 × Z/vZ | x 6= y} in two different ways. On the one
hand, |D| = k(k − 1) since there are k(k − 1) distinct pairs of elements in S. On the other hand,
|D| = λ(v− 1) since every nonzero element of Z/vZ arises as a difference x− y for exactly λ pairs
(x, y) ∈ S2. Therefore, k(k− 1) = λ(v− 1).

We now ask the usual question: when do (v, k, λ) cyclic difference sets exist? In general, this is a
difficult open question. We begin by giving one general family of cyclic difference sets.

Proposition 14.4. Let m > 1 such that p = 4m − 1 is prime. Then S = {x2 | x ∈ Z/pZ} \ {0} is a
(4m− 1, 2m− 1, m− 1) cyclic difference set.

Proof. This proof is nonexaminable.

Let X = (Z/pZ) \ {0}. Write −S = {−s | s ∈ S}. We will begin by proving X is the disjoint union
S ∪ −S where |S| = | − S| = |X|/2. To do this, we will use a small amount of group theory from
Introduction to Proofs and Group Theory.

Recall that X is a group under multiplication modulo p, and note that S is a subgroup of X since
x2y2 = (xy)2 ∈ S and (x2)−1 = (x−1)2 for all x, y ∈ X. For all x, y ∈ X, note that x2 = y2 if and only
y ∈ {x,−x} and note that x 6= −x since 2x 6= 0 as p > 2 (we can divide through by x since x 6= 0 and
Z/pZ is a field). Therefore, |S| = |X|/2.

Suppose that −1 ∈ S. Then there exists x ∈ X such that x2 = −1, so x4 = 1, which implies that x
has order 4 in the group X = (Z/pZ) \ {0} under multiplication modulo p. However, by Lagrange’s
theorem the order of x must divide the order of |X| = p − 1 = 4m − 2, which is a contradiction.
Therefore, −1 6∈ S. This implies that we can write X as a disjoint union of cosets S ∪−S, as claimed.

For each z ∈ X, write Dz = {(x, y) ∈ S2 | x − y = z}. We will prove that |Dz| = |D1| for all
z ∈ X = S ∪−S. If z ∈ S, then |Dz| = |D1| since D1 → Dz defined as (x, y) 7→ (zx, zy) is a bijection. If
z ∈ −S, then |Dz| = |D−1| since D−1 → Dz defined as (x, y) 7→ (−zx,−zy) is a bijection. It remains
to note that |D−1| = |D1| since D1 → D−1 defined as (x, y) 7→ (y, x) is a bijection.

We have shown that |Z/pZ| = 4m− 1 and |S| = |X|/2 = 2m− 1, and that every nonzero element
of Z/pZ arises as x − y for the same number, say λ, of pairs (x, y) ∈ S2. In other words, S is a
(4m− 1, 2m− 1, λ) cyclic difference set. By Lemma 14.3, λ(4m− 2) = (2m− 1)(2m− 2), so λ = m− 1.
This completes the proof.
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Example 14.5. Let us apply Proposition 14.4 with m = 2. Modulo p = 7, we have

12 = 1, 22 = 4, 32 = 9 = 2, 42 = 16 = 2, 52 = 25 = 4, 62 = 36 = 1,

so S = {1, 2, 4}, which is the (7, 3, 1) cyclic difference set from Example 14.2.

We now give two ways of obtaining new cyclic difference sets from an existing one.

Proposition 14.6. Let S ⊆ Z/vZ be a (v, k, λ) cyclic difference set. Then the complement (Z/vZ) \ S is a
(v, v− k, v− 2k + λ) cyclic difference set.

Proof. This is proved in Problem 2 on Sheet 3.

For S ⊆ Z/vZ and a ∈ Z/vZ, we write S + a = {s + a | s ∈ S} for the translate of S by a.

Proposition 14.7. Let S ⊆ Z/vZ be a (v, k, λ) cyclic difference set. Then S + a is a (v, k, λ) cyclic difference
set for all a ∈ Z/vZ.

Proof. Let a ∈ Z/vZ. For all x, y ∈ S we have (x + a)− (y + a) = x − y. Therefore, the differences
x′ − y′ for all distinct x′, y′ ∈ S + a are exactly the differences x − y for all distinct x, y ∈ S, so, in
particular, we obtain every nonzero element of Z/vZ exactly λ times.

Example 14.8. Recall from Example 14.2 that S = {1, 2, 4} ⊆ Z/7Z is a (7, 3, 1) cyclic difference set.
Therefore, so are all of the translates

S + 0 = {1, 2, 4}, S + 1 = {2, 3, 5}, S + 2 = {3, 4, 6}, S + 3 = {4, 5, 0},
S + 4 = {5, 6, 1}, S + 5 = {6, 0, 2}, S + 6 = {0, 1, 3}.

Representing these translates pictorially returns the familiar Fano plane (see Example 9.2).
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The following result generalises Example 14.8.

Theorem 14.9. Let S ⊆ Z/vZ be a (v, k, 1) cyclic difference set with v > 3.

(i) There exists a positive integer n such that v = n2 + n + 1 and k = n + 1.

(ii) Let P = Z/vZ and L = {S + a | a ∈ Z/vZ}. Then (P ,L) is a finite projective plane of order n.

Proof. Let n = k− 1. Therefore, k = n + 1, and Lemma 14.3 implies that v− 1 = k(k− 1) = (n + 1)n,
so v = n2 + n + 1. This proves (i).

We now turn to (ii). We will apply Proposition 9.8. Part (i) tells us that conditions (I) and (II) are
satisfied. We now establish condition (III). Let p1, p2 ∈ P be distinct. We claim that there is a unique
element of L that contains p1 and p2. Since S is a (v, k, 1) cyclic difference set, there is a unique pair

18



(x, y) ∈ S2 such that x− y = p1 − p2. Let a = p1 − x = p2 − y. Then p1 = x + a and p2 = y + a, so
p1, p2 ∈ S + a. Now let b ∈ Z/vZ such that p1, p2 ∈ S + b. There exist s, t ∈ S such that p1 = s + b and
p2 = t + b, so p1 − p2 = s− t, so (s, t) = (x, y) and b = p1 − s = p1 − x = a. Therefore, S + a is the
unique translate of S to contain p1, p2. By Proposition 9.8, (P ,L) is a projective plane of order n.

By Theorem 14.9, if there exists a (n2 + n+ 1, n+ 1, 1) cyclic difference set, then there exists a projective
plane of order n, but it is not known whether the converse is true. However, there do certainly exist
(n2 + n + 1, n + 1, 1) difference sets whenever n is a prime power. Perhaps unsurprisingly by now,
these are constructed from the finite field Fn, but this construction requires particular results about
finite fields which are beyond the scope of this course, so we omit this (if you are interested, see [van
Lint & Wilson, pages 377–379]).

15 Dobble
This section is nonexaminable.

Dobble is card game with a deck of 55 cards each of which features 8 pictures (of a possible 57). At
any time each player has a pile of cards face up in front of them and there is a card face up in the
middle, and the players each try to find the one picture that appears on both their card and the card
in the middle. Crucially any two cards have exactly one picture in common. However, Dobble is
mathematically unsatisfying. For example, some pictures occur on more cards than others: 42 pictures
occur 8 times, 14 pictures occur 7 times and the snowman sadly occurs only 6 times.

My recommendation is to add the following two cards to your Dobble set

dog, exclamation mark, eye, hammer, ladybird, lightbulb, skull & crossbones, snowman

cactus, dinosaur, flower, ice cube, leaf, person, question mark, snowman

With this improved version of Dobble, if P is the set of pictures and L is the set of cards (which are
sets of pictures), then (P ,L) is a projective plane of order 7 (noting that 57 = 72 + 7+ 1 and 8 = 7+ 1).
In particular there are exactly 57 pictures and exactly 57 cards, each card features exactly 8 pictures
and each picture is featured on exactly 8 cards, any two cards have a unique picture in common and
any two pictures feature together on a unique card.

Further reading
I hope that you have enjoyed this half of the course. If you want to find out more about the topics in
this course, then here are some good places to start.

P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.
– This book is accessible. See Chapters 6 and 9.

J.H van Lint & R. M. Wilson, A Course in Combinatorics, Cambridge University Press, 2001.
– This book is more advanced. See Chapters 17, 19, 22, 23 and 27.

R. Wilson & J. J. Watkins, Combinatorics: Ancient and Modern, Oxford University Press, 2013.
– This is a book on the history of combinatorics. See Chapters 10 and 11.

D. R. Stinson, A Short Proof of the Nonexistence of a Pair of Orthogonal Latin Squares of Order Six,
Journal of Combinatorial Theory, Series A 36, 373–376 (1984).
– This is a journal article that gives what it says in the title.
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