Topics in Discrete Mathematics

Problem Sheet 1

There is no assessed homework on this sheet.

If you wish, you may hand in solutions to Problems 3, 5, 7, 9 for marking.

Latin squares

- 1. Arrange the four Jacks, Queens, Kings and Aces from a standard pack of playing cards in a four by four grid such that no rank or suit is repeated in any row or column.
- 2. Complete the following array to make a Latin square

- 3. Show that the number of Latin squares of order n, with entries in $\{1, 2, ..., n\}$, is 1, 2, 12 when n is 1, 2, 3, respectively.
- 4. Prove that there do not exist two orthogonal Latin squares of order 2.
- 5. Use the field with four elements to write down 3 mutually orthogonal Latin squares of order 4.
- 6. Write down the direct product $A \times B$ where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$

- 7. Write down two orthogonal Latin squares of order 12.
- 8. Let $A = (a_{ij})$ be a Latin square of order n, whose rows, columns and symbols are indexed by $S = \{1, 2, ..., n\}$. Let $X = \{(i, j, k) \in S^3 \mid a_{ij} = k\}$.
 - (a) Define $B = (b_{ij})$ as $b_{ij} = k$ if $(j, i, k) \in X$. Prove that B is a Latin square.
 - (b) Define $C = (c_{ij})$ as $c_{ij} = k$ if $(i, k, j) \in X$. Prove that C is a Latin square.
- 9. Let $A = (a_{ij})$ and $B = (b_{ij})$ be Latin squares of order n. Prove that A and B are orthogonal if and only if for every $(x,y) \in \{1,2,\ldots,n\}^2$ there exists $(i,j) \in \{1,2,\ldots,n\}^2$ such that $(a_{ij},b_{ij})=(x,y)$.
- 10. Prove that there exist k + 2 mutually orthogonal $n \times n$ arrays if and only if there exist k mutually orthogonal Latin squares of order n.

1

Optional problems for students who are familiar with groups

- 1*. (a) Prove that the Cayley table of a finite group is a Latin square.
 - (b) Write down a Latin square that is not the Cayley table of a group. Justify your example.
- 2*. Let $A=(a_{ij})$ and $B=(b_{ij})$ be Latin squares of order n. Then A is *isotopic* to B if $a_{ij}=\rho(b_{\sigma(i)\tau(j)})$ for some permutations ρ,σ,τ on n points. Write $A\sim B$ if A is isotopic to B.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Assume $A \sim B$. Prove that A has an orthogonal mate if and only if B does.
- 3*. Let $A=(a_{ij})$ be a Latin square of order n. Then A satisfies the *quadrangle condition* if for all $i_1,i_2,j_1,j_2,k_1,k_2,l_1,l_2 \in \{1,\ldots,n\}$ we have

$$(a_{i_1j_1} = a_{k_1l_1} \& a_{i_1j_2} = a_{k_1l_2} \& a_{i_2j_1} = a_{k_2l_1}) \implies a_{i_2j_2} = a_{k_2l_2}$$

- (a) Let *A* be the Cayley table of a finite group. Prove that *A* satisfies the quadrangle condition.
- (b) Assume that $A \sim B$. Prove that A satisfies the quadrangle condition if and only if B does.
- (c) Prove that *A* satisfies the quadrangle condition if and only if *A* is isotopic to the Cayley table of a finite group.