Topics in Discrete Mathematics

Problem Sheet 2

Assessed Homework 1

- 1. For each $n \times n$ array with entries in $\{0, 1, ..., n-1\}$, determine, with proof, whether it is a Latin square, and if it is, determine, with proof, whether it has an orthogonal mate:
 - (a) the 7 × 7 array $A = (a_{ij})$ defined as $a_{ij} = i + 2j \pmod{7}$
 - (b) the 8 × 8 array $B = (b_{ij})$ defined as $b_{ij} = i j \pmod{8}$
 - (c) the 9 × 9 array $C = (c_{ij})$ defined as $c_{ij} = i + 3j \pmod{9}$.
- 2. Referring to the axioms defining a projective plane, write down (without proof) an example of a set \mathcal{P} and a set \mathcal{L} of subsets of \mathcal{P} that satisfy
 - (a) Axioms (1) and (2) but not Axiom (3)
 - (b) Axioms (1) and (3) but not Axiom (2)
 - (c) Axioms (2) and (3) but not Axiom (1).

Latin squares

- 3. (a) Write down a Latin square A with symbols 1, 2, 3, 4 that has an orthogonal mate.
 - (b) Write down a Latin square *B* with symbols 1, 2, 3, 4 that does not have an orthogonal mate.
 - (c) Show that any Latin square of order four, with symbols 1, 2, 3, 4, can be obtained from either *A* or *B* by permuting the rows, columns and symbols.
- 4. Let $A = (a_{ij})$ be the Latin square with entries in $\{0, 1, ..., n-1\}$ defined by $a_{ij} = i + j \pmod{n}$. Prove that *A* has an orthogonal mate if and only if *n* is odd.
- 5. Let *A* be a Latin square of order *n*. Assume that *A* is the union of disjoint transversals $T_1, T_2, ..., T_n$. Define $B = (b_{ij})$ as $b_{ij} = k$ if and only if $(i, j) \in T_k$. Prove that *B* is a Latin square orthogonal to *A*.
- 6. Write down a Latin square of order 7 that has no orthogonal mate.

Projective planes

- 7. (a) What is the order of a projective plane such that each point is on exactly 8 lines?
 - (b) How many lines does a projective plane of order 8 have?
 - (c) Does there exist a projective plane with exactly 8 lines?
- 8. Let (*P*, *L*) be a projective plane of order *n*. A *triangle* is a set of three distinct points of *P* that are not contained in a common line. Prove that the number of triangles in (*P*, *L*) is

$$n^{2}(n^{2}+n)(n^{2}+n+1)/6.$$

Let (P, L) be a projective plane. Let p ∈ P. Prove, directly from the defining axioms of a projective plane, that there exists l ∈ L such that p ∉ l.

The following problem is quite involved.

- 10. Let \mathcal{P} be a finite set and let \mathcal{L} be a set of subsets of \mathcal{P} . Assume that there exists $n \ge 2$ such that
 - (I) $|\mathcal{P}| = n^2 + n + 1$
 - (II) |l| = n + 1 for all $l \in \mathcal{L}$
 - (III) for any distinct $p, p' \in \mathcal{P}$ there exists a unique $l \in \mathcal{L}$ such that $p, p' \in l$.

The aim of this problem is to prove that $(\mathcal{P}, \mathcal{L})$ is a finite projective plane of order *n*.

- (a) Prove that $(\mathcal{P}, \mathcal{L})$ satisfies Axiom (1).
- (b) (i) Prove that $|\mathcal{L}| = n^2 + n + 1$.
 - (ii) Prove that any $p \in \mathcal{P}$ is contained in exactly n + 1 subsets $l \in \mathcal{L}$.
 - (iii) Hence, or otherwise, prove that $(\mathcal{P}, \mathcal{L})$ satisfies Axiom (2).
- (c) Prove that $(\mathcal{P}, \mathcal{L})$ satisfies Axiom (3).