Topics in Discrete Mathematics

Problem Sheet 3

Assessed Homework 2

- 1. Let *N* be the smallest positive integer strictly greater than 1 for which there exist 41 mutually orthogonal Latin squares of order *N*. Determine
 - (a) the value of N
 - (b) the maximal size of a set of mutually orthogonal Latin squares of order *N*.

Justify your answers. You may use, without proof, any result from the lecture notes.

2. Write $X = \mathbb{Z}/v\mathbb{Z}$. Let $S \subseteq X$ be a (v, k, λ) cyclic difference set. Prove that the complement $X \setminus S$ is a $(v, v - k, v - 2k + \lambda)$ cyclic difference set.

Projective planes

- 3. Does there exist a finite projective plane of order 21?
- 4. (a) Draw $P_2(\mathbb{F}_3)$.
 - (b) From $P_2(\mathbb{F}_3)$, construct two orthogonal Latin squares of order 3.
- 5. Let $l_{\infty} = \{p_a \mid a \in \mathbb{Z} \cup \{\infty\}\}$. Define $\mathcal{P} = \mathbb{Z}^2 \cup l_{\infty}$ and $\mathcal{L} = \{l_{\infty}\} \cup \bigcup_{a \in \mathbb{Z} \cup \{\infty\}} \mathcal{L}_a$, where

$$\mathcal{L}_a = \begin{cases} \{\{(x, ax + b) \mid x \in \mathbb{Z}\} \cup \{p_a\}\} \mid b \in \mathbb{Z}\} & \text{if } a \in \mathbb{Z} \\ \{\{(c, y) \mid y \in \mathbb{Z}\} \cup \{p_\infty\}\} \mid c \in \mathbb{Z}\} & \text{if } a = \infty. \end{cases}$$

Is $(\mathcal{P}, \mathcal{L})$ a projective plane?

- 6. (a) Let \mathcal{P} be a set and let \mathcal{L} be a set of subsets of \mathcal{P} . The *dual* of $(\mathcal{P}, \mathcal{L})$ is $(\mathcal{P}', \mathcal{L}')$ where $\mathcal{P}' = \mathcal{L}$ and $\mathcal{L}' = \{\{l \in \mathcal{L} \mid p \in l\} \mid p \in \mathcal{P}\}$. Is the dual of a projective plane a projective plane?
 - (b) Projective planes $(\mathcal{P}_1, \mathcal{L}_1)$ and $(\mathcal{P}_2, \mathcal{L}_2)$ are *equivalent* if is a bijection $f : \mathcal{P}_1 \to \mathcal{P}_2$ such that for $l \subseteq \mathcal{P}_1$ we have $l \in \mathcal{L}_1$ if and only if $f(l) \in \mathcal{L}_2$. Is the Fano plane equivalent to its dual?

Cyclic difference sets

- 7. Let $S \subseteq \mathbb{Z}/40\mathbb{Z}$ be a (40, *k*, 4) cyclic difference set. Determine *k*.
- 8. Verify directly Proposition 14.4 with m = 3.
- 9. Write down
 - (a) a (23, 11, 5) cyclic difference set
 - (b) a (19, 10, 5) cyclic difference set
 - (c) a (11, 5, 2) cyclic difference set that contains 2.
- 10. Assume that v and k are coprime. Let $S \subseteq \mathbb{Z}/v\mathbb{Z}$ be a (v, k, λ) cyclic difference set. Prove that there exists a unique $a \in \mathbb{Z}/v\mathbb{Z}$ such that the sum of elements of S + a is zero.